TWAIN Specification

Version 2.4

This document was ratified
by the TWAIN Working Group

on December 11th, 2015

TWAIN

Linking Images With Applications

Acknowledgments

The TWAIN Working Group acknowledges the following individuals and their respective
companies for their contributions to this document. Their hard work in defining, designing,
editing, proofreading, and discussing the evolution of the document have been invaluable.

Adobe Systems Incorporated Fujitsu Computer Products of America
Scott Foshee Pamela Doyle
Atalasoft Hewlett-Packard
Glenn Chittenden Jr. Sarah Schwartz
Adam Scarborough . .
Spike McLarty JFL Pen.pheral Solutions Inc.
Jon Harju
Avision inc. Rebecca Holz
Leo Liao Mihail Mikov
Jun Huang

PFU Limited, a Fujitsu Company
Dynamsoft Corporation Daisuke Kutsuwada
Catherine Sea

The TWAIN Working Group
Kodak Alaris, Inc. Hilary Minugh
Mark McLaughlin
Epson
Tak Shiozaki

We would also like to thank the TWAIN Working Group Technical Committee for their opinions
and contributions..

The TWAIN Working Group would like to dedicate TWAIN 2.4 to the memory of Sarah Swartz
who worked tirelessly to ensure the professional quality of this specification.”

TWAIN

Linking Images With Applications

Table of Contents

Table of Contents

L INtrodUCHioN 1-1
Need for COoNSIStENCY i 1-1
Elements of TWAIN e e e e e 1-1
Benefits of Using TWAIN e e e e e e e e 1-2
Creation of TWAINo e 1-3
2. Technical OVerVIieW o e e e e e e 2-1
TWAIN ArChiteCtUre . ..o e e 2-1
TWAIN User Interface e e 2-4
Communication Between the Elements of TWAIN 2-5
Using Operation Triplets e e e e e 2-10
The State-Based Protocol 2-11
Capabilities 2-14
Modes Available for Data Transfer i 2-19
3. Application Implementation 3-1
Levels of TWAIN Implementation i e 3-1
Installation of the Source Manager Software i, 3-2
Changes Needed to Prepare fora TWAIN Sessionc ... 3-2
Controlling a TWAIN Session from Your Application 3-9
Error Handling e 3-26
Best Practices for TWAIN Compliant Applications 3-28
LegaCy ISSUBS . . .o 3-40

TWAIN 2.4 Specification i

Table of Contents

4. Advanced Application Implementation 4-1
Capabilities 4-1
Options for Transferring Data i e e e e 4-17
The ImageData and Its Layout 4-23
Transfer of Multiple Images 4-26
Transfer of Compressed Datattt e 4-32
Alternative User Interfaces 4-35
Grayscale and Color Informationforanimage i 4-38
5. Source Implementation. 5-1
The Structure of @ SOUICEo e 5-1
Operation TripletS e e 5-2
Sourcesand the EVeNt LOOp 5-3
User Interface GUIdelines e 5-4
Capability Negotiation e e e 5-6
Data TransSiers e 5-8
Error Handlingo oo e 5-11
Memory Management 5-12
Requirements for a Source to be TWAIN-Compliant 5-13
Other TOPICS . o o vttt e e e 5-21
6. Entry Points and Triplet Components. 6-1
ENtry POINtS e 6-1
Data GrOUPS . . . ottt ettt e 6-4
Data ArgUMENt TYPES . . ottt 6-4
MBS S A0S . . .ottt 6-6
Custom Components of Triplets 6-8

ii TWAIN 2.4 Specification

Table of Contents

7. Operation Triplets 7-1
THPIEt OVEIVIEW . . . o 7-1
Format of the Operation Triplet Descriptions i 7-5
Operation Triplets 7-7
8. Data Types and Data StruCtUresttt 8-1
Naming ConVeNtioNS e 8-1
Platform Dependent Definitions and Typedefs i i, 8-3
Definitions of CommoONn TYPES . . .ot i it e e e 8-6
Data Structure Definitions e 8-8
Data Argument Types that Don't Have Associated TW_Structures 8-65
CONS ANESo 8-67
Deprecated temsS 8-100
9. Extended Image Information Definitions. i 9-1
TWAIN 1.7 Extended Image Attribute Capabilities 9-1
TWAIN 1.9 Extended Image Attribute Capabilities 9-12
TWAIN 1.91 Extended Image Attribute Capabilities 9-15
TWAIN 2.0 Extended Image Attribute Capabilities 9-17
TWAIN 2.1 Extended Image Attribute Capabilities 9-17
TWAIN 2.2 Extended Image Attribute Capabilities 9-18
TWAIN 2.3 Extended Image Attribute Capabilities 9-18
TWAIN 2.4 Extended Image Attribute Capabilities 9-19
10. Capabilities. 10-1
OVBIVIBW . .ttt e e e e 10-1
Required Capabilities 10-3
Capabilities in Categories of Functionality 10-3

TWAIN 2.4 Specification iii

Table of Contents

11.Return Codes and Condition Codes 11-1
An Overview of Return Codes and Condition Codes, 11-1
Currently Defined Return Codest e e e e e 11-2
Currently Defined Condition Codes e 11-3
Custom Return and Condition Codes i e 11-4
12.Operating System DependencCies. 12-1
Developing for WINdOWSo e e 12-1
Developing for Mac e e 12-8
Developing for LiNUX 12-12
13. TWAIN Self-Certification Process for Data Sources 13-1
OVBIVIBW . . ettt e e e e 13-1
Non-Goals of Basic TWAIN Self-Certification 13-2
Affirmation of Successful Completion of TWAIN Self-Certification 13-3
TWAIN “Congratulations” Webpage i i e 13-10
TWAIN Self-Certification TestS i e e 13-10
TWAIN Standard Capability TESIS e 13-11
Vendor Custom Capability TestS e 13-19
Status RetUrn TestSo e e 13-25
SHIESS TS . . ettt 13-27
Non-Ul Image Transfer Tests e e e e e 13-28
Ul Image Transfer TestS e e 13-33
CAP_XFERCOUNT TSt . . oottt ittt e e e e e e 13-34
VISION TS S . o oot e 13-39
Verify Values For MSG_RESETALLand MSG_RESET 13-41
A. TWAIN ArtiCleS. . .o e Al
DEVICE EVENIS . . .o A-1

iv TWAIN 2.4 Specification

Table of Contents

SUPPOMEd SiZES . ..ottt e A-5
AUtOMALIC CaptUre A-7
CaMEra PreVIBW . . . ot A-8
File System . .. A-11
Internationalization A-19
AUdIO SNIPPELS . .o e A-26
How to use the Preview DeviCe i e e A-28
IMprinter / ENOISer e A-30
Capability Orderingot e e A-31
DefaUIlS A-42
B. TWAIN Technical SUPPOIt. e B1l

TWAIN 2.4 Specification v

Table of Contents

Vi TWAIN 2.4 Specification

Introduction

Chapter Contents

Need for CONSIStENCYottt 1-1
Elements of TWAIN 1-1
Benefits of Using TWAIN. ... 1-2
Creation of TWAIN. s 1-3

Need for Consistency

With the introduction of scanners, digital cameras, and other image acquisition devices, users
eagerly discovered the value of incorporating images into their documents and other work.
However, supporting the display and manipulation of this raster data placed a high cost on
application developers. They needed to create user interfaces and build in device control for the
wide assortment of available image devices. Once their application was prepared to support a
given device, they faced the discouraging reality that devices continue to be upgraded with new
capabilities and features. Application developers found themselves continually revising their
product to stay current.

Developers of both the image acquisition devices and the software applications recognized the
need for a standard communication between the image devices and the applications. A standard
would benefit both groups as well as the users of their products. It would allow the device
vendors’ products to be accessed by more applications and application vendors could access data
from those devices without concern for which type of device, or particular device, provided it.
TWAIN was developed because of this need for consistency and simplification.

Elements of TWAIN

TWAIN defines a standard software protocol and API (application programming interface) for
communication between software applications and image acquisition devices (the source of the
data).

TWAIN 2.4 Specification 1-1

Chapter 1

The three key elements in TWAIN are:

Application software
An application must be modified to use TWAIN.

Source Manager software

This software manages the interactions between the application and the Source. This code is
provided in the TWAIN Developer’s Toolkit and should be shipped for free with each
TWAIN application and Source.

Source software

This software controls the image acquisition device and is written by the device developer to
comply with TWAIN specifications. Traditional device drivers are now included with the
Source software and do not need to be shipped by applications.

HW Dependant I/O Layer
(SCsSI, Parallel, Serial, etc.)

Application Source Manager Data Source
Software Software Software
Image Digital Camera
Application Data Source
Fax Data Source R Scanner
Application Manager ~| Data Source
Word Processor _| Image Database
Application TWAIN Data Source
Interfaces

Consumers of
Image Data

Producers of
Image Data

Figure 1-1 TWAIN Elements

Benefits of Using TWAIN

1-2

For the Application Developer

Allows you to offer users of your application a simple way to incorporate images from any
compatible raster device without leaving your application.

Saves time and dollars. If you currently provide low-level device drivers for scanners, etc.,
you no longer need to write, support, or ship these drivers. The TWAIN-compliant image
acquisition devices will provide Source software modules that eliminate the need for you to
create and ship device drivers.

Permits your application to access data from any TWAIN-compliant image peripheral simply
by modifying your application code once using the high-level TWAIN application
programming interface. No customization by product is necessary. TWAIN image peripherals

TWAIN 2.4 Specification

can include desktop scanners, hand scanners, digital cameras, frame grabbers, image
databases, or any other raster image source that complies to the TWAIN protocol and APL

* Allows you to determine the features and capabilities that an image acquisition device can
provide. Your application can then restrict the Source to offer only those capabilities that are
compatible with your application’s needs and abilities.

* Eliminates the need for your application to provide a user interface to control the image
acquisition process. There is a software user interface module shipped with every TWAIN-
compliant Source device to handle that process. Of course, you may provide your own user
interface for acquisition, if desired.

For the Source Developer

* Increases the use and support of your product. More applications will become image
consumers as a result of the ease of implementation and breadth of device integration that
TWAIN provides.

* Allows you to provide a proprietary user interface for your device. This lets you present the
newest features to the user without waiting for the applications to incorporate them into their
interfaces.

* Saves money by reducing your implementation costs. Rather than create and support various
versions of your device control software to integrate with various applications, you create just
a single TWAIN-compliant Source.

For the End User

* Gives users a simple way to incorporate images into their documents. They can access the
image in fewer steps because they never need to leave your application.

Note: TWAIN is supported on all versions of Microsoft Windows and Apple Mac OS X.
TWAIN 2.x and higher includes support for Linux and 64-bit operating systems.
Information about supporting TWAIN on 16-bit operating systems and older versions of
the Apple Macintosh OS are no longer described in the current TWAIN specification.
Please refer to version 1.9 of the Specification for support of older operating systems.

Creation of TWAIN

TWAIN was created by a small group of software and hardware companies in response to the
need for a proposed specification for the imaging industry. The Working Group’s goal was to
provide an open, multi-platform solution to interconnect the needs of raster input devices with
application software. The original Working Group was comprised of representatives from five
companies: Aldus, Caere, Kodak Alaris, Hewlett-Packard, and Logitech. Three other companies,
Adobe, Howtek, and Software Architects also contributed significantly.

The design of TWAIN began in January, 1991. Review of the original TWAIN Developer’s Toolkit
occurred from April, 1991 through January, 1992. The original Toolkit was reviewed by the
TWAIN Coalition. The Coalition includes approximately 300 individuals representing 200
companies who continue to influence and guide the future direction of TWAIN.

TWAIN 2.4 Specification 1-3

Chapter 1

1-4

The current version of TWAIN was written by members of the TWAIN Working Group including
Adobe, Kodak Alaris, Inc., Fujitsu Computer Products of America, Hewlett-Packard Company,
JEL Peripheral Solutions Inc., Ricoh Corporation, Xerox Corporation, and Lizardtech Corporation.

In May, 1998, an agreement was announced between Microsoft and the TWAIN Working Group
which provided for the inclusion of the TWAIN Data Source Manager in Microsoft Windows 98
and Microsoft Windows NT 5.0.

During the creation of TWAIN, the following architecture objectives were adhered to:

Ease of Adoption — Allow an application vendor to make their application TWAIN-
compliant with a reasonable amount of development and testing effort. The basic features of
TWAIN should be implemented just by making modest changes to the application. To take
advantage of a more complete set of functionality and control capabilities, more development
effort should be anticipated.

Extensibility — The architecture must include the flexibility to embrace multiple windowing
environments spanning various host platforms (Mac OS X, Microsoft Windows, Linux with
KDE or Gnome, etc.) and facilitate the exchange of various data types between Source devices
and destination applications. Currently, only the raster image data type is supported but
suggestions for future extensions include text, facsimile, vector graphics, and others.

Integration — Key elements of the TWAIN implementation “belong” in the operating system.
The agreement between Microsoft and the TWAIN Working Group indicates that this
integration into the operating system is beginning. TWAIN must be implemented to
encourage backward compatibility (extensibility) and smooth migration into the operating
system. An implementation that minimizes the use of platform-specific mechanisms will have
enhanced longevity and adoptability.

Easy Application <-> Source Interconnect — A straight-forward Source identification and
selection mechanism will be supplied. The application will drive this mechanism through a
simple APL This mechanism will also establish the data and control links between the
application and Source. It will support capability and configuration communication and
negotiation between the application and Source.

Encapsulated Human Interface — A device-native user interface will be required in each
Source. The application can optionally override this native user interface while still using the
Source to control the physical device.

TWAIN 2.4 Specification

Technical Overview

Chapter Contents

TWAIN Architecture. e e e e e e e 2-1
TWAIN User Interfacettt e e e e 2-4
Communication Between the Elements of TWAIN 2-5
Using Operation Triplets 2-10
The State-Based Protocol o 2-11
Capabilities. 2-14

The TWAIN protocol and API are easiest to understand when you see the overall picture. This
chapter provides a technical overview of TWAIN.

TWAIN Architecture

The transfer of data is made possible by three software elements that work together in TWAIN:
the application, the Source Manager, and the Source.

These elements use the architecture of TWAIN to communicate. The TWAIN architecture consists
of four layers:

* Application
* Protocol
* Acquisition

e Device

The TWAIN software elements occupy the layers as illustrated below. Each layer is described in
the sections that follow.

TWAIN 2.4 Specification 2-1

Chapter 2

Application Layer User's
Application

" TWAIN Code

Protocol Layer Ve N\
\Source Managerj

e

< TWAIN Code P

Acquisition Layer Source

Device Interfacing
N

Device Layer

Local Device

Figure 2-1 TWAIN Software Elements

Application

The user’s software application executes in this layer.

TWAIN describes user interface guidelines for the application developer regarding how users
access TWAIN functionality and how a particular Source is selected.

TWAIN is not concerned with how the application is implemented. TWAIN has no effect on any
inter-application communication scheme that the application may use.

Protocol
The protocol is the “language” spoken and syntax used by TWAIN. It implements precise
instructions and communications required for the transfer of data.

The protocol layer includes:

* The portion of application software that provides the interface between the application and
TWAIN
* The TWAIN Source Manager provided by TWAIN

* The software included with the Source device to receive instructions from the Source Manager
and transfer back data and Return Codes

The contents of the protocol layer are discussed in more detail in “Communication Between the
Elements of TWAIN” on page 2-5.

2-2 TWAIN 2.4 Specification

http://www.twain.org

Acquisition

Device

Acquisition devices may be physical (like a scanner or digital camera) or logical (like an image
database). The software elements written to control acquisitions are called Sources and reside
primarily in this layer.

The Source transfers data for the application. It uses the format and transfer mechanism agreed
upon by the Source and application.

The Source always provides a built-in user interface that controls the device(s) the Source was
written to drive. An application can override this and present its own user interface for
acquisition, if desired.

This is the location of traditional low-level device drivers. They convert device-specific commands
into hardware commands and actions specific to the particular device the driver was written to
accompany. Applications that use TWAIN no longer need to ship device drivers because they are
part of the Source.

TWAIN is not concerned with the device layer at all. The Source hides the device layer from the
application. The Source provides the translation from TWAIN operations and interactions with
the Source’s user interface into the equivalent commands for the device driver that cause the
device to behave as desired.

Note: The Protocol layer is the most thoroughly and rigidly defined to allow precise
communications between applications and Sources. The information in this document
concentrates on the Protocol and Acquisition layers.

TWAIN 2.4 Specification 2-3

Chapter 2

TWAIN User Interface

When an application uses TWAIN to acquire data, the acquisition process may be visible to the
application’s users in the following three areas:

New
Open...

Save

Acquire...
Select Source...
Print

Print Setup...
Exit

Application

—| Select Source

Sources:

Source Number 1

Source Manager

Source Number 2

Source Number 3
| Cancel |

- I Source Number 1

Source Source’s
User Interface

Figure 2-2 Data Acquisition Process

The Application

The user needs to select the device from which they intend to acquire the data. They also need to
signal when they are ready to have the data transferred. To allow this, TWAIN strongly
recommends the application developer add two options to their File menu:

¢ Select Source - to select the device

* Acquire - to begin the transfer process

The Source Manager

When the user chooses the Select Source option, the application requests that the Source Manager
display its Select Source dialog box. This lists all available devices and allows the user to highlight
and select one device. If desired, the application can write its own version of this user interface.

The Source

Every TWAIN-compliant Source provides a user interface specific to its particular device. When
the application user selects the Acquire option, the Source’s User Interface may be displayed. If
desired, the application can write its own version of this interface, too.

2-4 TWAIN 2.4 Specification

Communication Between the Elements of TWAIN

Communication between elements of TWAIN is possible through two entry points. They are

called DSM Entry() and DS_Entry().DSMmeans Data Source Manager and DS means Data
Source.

Application

DSM_Entry()

Source Manager

A4

DS_Entry()

Source

Figure 2-3 Entry Points for Communicating Between Elements

The Application

The goal of the application is to acquire data from a Source. However, applications cannot contact
the Source directly. All requests for data, capability information, error information, etc. must be
handled through the Source Manager.

Approximately 140 operations are defined by TWAIN. The application sends them to the Source
Manager for transmission. The application specifies which element, Source Manager or Source, is
the final destination for each requested operation.

The application communicates to the Source Manager through the Source Manager’s only entry
point, the DSM Ent ry() function.

The parameter list of the DSM _Ent r y function contains:

* Anidentifier structure providing information about the application that originated the
function call

* The destination of this request (Source Manager or Source)

* A triplet that describes the requested operation. The triplet specifies:
* Data Group for the Operation (DG_)
* Data Argument Type for the Operation (DAT_)
* Message for the Operation (MSG_)

TWAIN 2.4 Specification 2-5

Chapter 2

2-6

* (These are described more in the section called Using Operation Triplets located later in this
chapter.)

* A pointer field to allow the transfer of data

The function call returns a value (the Return Code) indicating the success or failure of the
operation.

TW.UI NT16 TW CALLI NGSTYLE DSM Entry

(pTW.IDENTITY pOrigin, /1 source of nessage
pTW. I DENTI TY pDest , /1 destination of nessage
TW Ul NT32 DG, /1 data group I D: DG XXXX
TW Ul NT16 DAT, /1 data argunment type: DAT_XXXX
TW Ul NT16 MBG, /1 message I D. MBG XXXX
TW MEMREF pDat a /1 pointer to data
)

Note: Data type definitions are covered in Chapter 8, "Data Types and Data Structures", and in
the file called TWAI N. Hwhich can be downloaded from the TWAIN Working Group web
site http:/ /www.twain.org.)

The Source Manager

The Source Manager provides the communication path between the application and the Source,
supports the user’s selection of a Source, and loads the Source for access by the application.
Communications from application to Source Manager arrive in the DSM Entry() entry point.

e If the destination in the DSM_Entry call is the Source Manager
The Source Manager processes the operation itself.
e If the destination in the DSM_Entry call is the Source

The Source Manager translates the parameter list of information, removes the destination
parameter and calls the appropriate Source. To reach the Source, the Source Manager calls the
Source’s DS_Entry() function. TWAIN requires each Source to have this entry point.

Written in C code form, the DS_Ent r y function call looks like this:

TW Ul NT16 TW CALLI NGSTYLE DSM Entry

(pTWIDENTITY pOrigin, /] source of nmessage

TW Ul NT32 DG, /] data group | D: DG XXXX

TW Ul NT16 DAT, /] data argunent type: DAT_XXXX
TW Ul NT16 MBG /1 message | D: MBG_XXXX

TW MEMREF pDat a /] pointer to data

);

In addition, the Source Manager can initiate three operations that were not originated by the
application. These operation triplets exist just for Source Manager to Source communications and
are executed by the Source Manager while it is displaying its Select Source dialog box. The
operations are used to identify the available Sources and to open or close Sources.

The implementation of the Source Manager differs between the supported systems:

TWAIN 2.4 Specification

On Windows

* The Source Manager is a Dynamic Link Library (TWAINDSM.DLL).

* The Source Manager can manage simultaneous sessions between an application and many
Sources.

On Macintosh
* The Source Manager is a Mach-O framework (TWAIN.framework, TWAINDSM . framework).
On Linux

* The Source Manager is a shared library (/usr/local/lib/libtwaindsm.so).

* The Source Manager can manage simultaneous sessions between an application and many
Sources.

The Source

The Source receives operations either from the application, via the Source Manager, or directly
from the Source Manager. It processes the request and returns the appropriate Return Code (the
codes are prefixed with TWRC) indicating the results of the operation to the Source Manager. If
the originator of the operation was the application, then the Return Code is passed back to the
application as the return value of its DSM Ent ry() function call. If the operation was
unsuccessful, a Condition Code (the codes are prefixed with TWCC_) containing more specific
information is set by the Source. Although the Condition Code is set, it is not automatically passed
back. The application must invoke an operation to inquire about the contents of the Condition
Code.

The implementation of the Source is the same as the implementation of the Source Manager:

On Windows

* The Source is a Dynamic Link Library (DLL) with a .ds extension.

On Macintosh

* The Source is implemented as a bundle (preferably Mach-O) with a .ds extension.
On Linux

* The Source is a shared library (.so) with a .ds extension.

Communication Flowing from Source to Application

The majority of operation requests are initiated by the application and flow to the Source Manager
and Source. The Source, via the Source Manager, is able to pass back data and Return Codes.

However, there are four times when the Source needs to interrupt the application and request that
an action occur. These situations are:

* Notify the application that a data transfer is ready to occur. The time required for a Source to
prepare data for a transfer will vary. Rather than have the application wait for the preparation
to be complete, the Source just notifies it when everything is ready. The MSG_XFERREADY
notice is used for this purpose.

TWAIN 2.4 Specification 2-7

Chapter 2

2-8

Request that the Source’s user interface be disabled. This notification should be sent by the
Source to the application when the user clicks on the “Close” button of the Source’s user
interface. The M5G_CLOSEDSREQnotice is used for this purpose.

Notify the application that the OK button has been pressed, accepting the changes the user
has made. This is only used if the Source is opened with DG_CONTRCL /

DAT_USERI NTERFACE / MSG_ENABLEDSUI ONLY. The MSG_CLOSEDSCK notice is used for
this purpose.

A Device Event has occurred. This notification is sent by the Source to the Application when a
specific event has occurred, but only if the Application gave the Source prior instructions to

pass along such events. The M5G_DEVI CEEVENT notice is used for this purpose.

These notices are presented to the application in its event (or message) loop. The process used for
these notifications is covered more fully in Chapter 12, "Operating System Dependencies", in the

discussion of the application’s event loop.

Identifying TWAIN 2.0 Elements

It is not sufficient to test the TW | DENTI TY.ProtocolMajor field to determine if an Application, a

Data Source Manager or a Source is TWAIN 2.0 compliant. Check the
TW. I DENTI TY. Support edG oups field for the Application or the Source, and look for the
following:

* DF_APP2, indicating that the Application is 2.0 compliant
* DF_DSM, indicating that the Data Source Manager is 2.0 compliant
* DF_DS2, indicating that the Data Source is 2.0 compliant

Applications

All TWAIN 2.0 compliant Applications must report DF_APP2 in their
TW. I DENTI TY. Support edG oups field.

All TWAIN 2.0 compliant Applications must test for the DF_DSM?2 flag in the

TW. I DENTI TY. Support edGr oups field, after a call to DG_CONTROL / DAT_PARENT /
MBG_OPENDSM If this flag is not found, then follow the legacy behavior for 1.x Applications,
using the memory management functions detailed in the TWAIN Specification.

If the flag is found, then the Application must call DG CONTROL / DAT_ENTRYPO NT /
MBG_GET in State 3, before performing any other operation, to obtain pointers to the memory
management functions.

Sources

All TWAIN 2.0 compliant Sources must report DF_DS2 in their
TW_I DENTI TY. Support edG oups field.

All TWAIN 2.0 compliant Sources must be prepared to receive the DG_CONTROL /
DAT_ENTRYPO NT / MSG_SET call in State 3, before DG_CONTROL / DAT_I DENTI TY /
MSG_OPENDS is called. If this operation is not called, then follow the legacy behavior for 1.x
Sources, using the memory management functions detailed in the TWAIN Specification, and
locating the Data Source Manager as indicated.

TWAIN 2.4 Specification

If the operation is called then the Source must use the pointers to the memory management
functions, and must use the supplied entry point to access DSM_Entry.

Using DAT_CALLBACK for Messages from the Source to the Application

Applications

TWAIN Applications running on Linux, Apple Macintosh OS X or Windows must use
DG _CONTRCL / DAT_CALLBACK / MSG_REGQ STER_CALLBACK to register to receive
asynchronous notifications for events like MSG_XFERREADY.

TWAIN Applications using older versions of the Data Source Manager (no DF_DSM flag
detected) must use legacy behavior. Please refer to Chapter 12, "Operating System Dependencies"
for more information.

Please note that TWAIN Applications are advised to return as soon as possible from a callback
function. Events like MSG_XFERREADY should initiate the image transfer on the same thread that
did MSG_ENABLEDS so that the callback can return immediately.

Sources

TWAIN Sources that detect the presence of the DF_DSM flag inside of
TW | DENTI TY. Suppor t edG oups mustuse DG CONTROL / DAT_NULL with the appropriate
message to return events like M5SG_XFERREADY.

TWAIN Sources using older versions of the Data Source Manager (no DF_DSM flag detected)
must use legacy behavior. Please refer to Chapter 12, "Operating System Dependencies" for more
information.

Installation of the Data Source Manager

TWAIN Applications and Sources should install the latest version of the Data Source Manager. Please
check the TWAIN website http:/ /www.twain.org to see if your Operating System or distro is
represented, and if not, please consider making a submission to the TWAIN Working Group.

Refer to Chapter 12, "Operating System Dependencies".

Memory Management in TWAIN 2.0 and Higher

TWAIN requires Applications and Sources to manage each other’s memory. The chief problem is
guaranteeing agreement on the API’s to use.

TWAIN 2.0 introduces four new functions that are obtained from the Source Manager through
DAT_ENTRYPO NT.

TW HANDLE TW CALLI NGSTYLE DSM MenAl | ocat e (TW.U NT32)

voi d TW CALLI NGSTYLE DSM Mentree (TW_HANDLE)

TW MEVMREF TW CALLI NGSTYLE DSM MemLock (TW HANDLE)

voi d TW CALLI NGSTYLE DSM Menlnl ock (TW HANDLE)

The Source Manager takes the responsibility to make sure that all components are using the same
memory management APIs.

TWAIN 2.4 Specification 2-9

Chapter 2

If DAT_ENTRYPOQO NT is not obtained from the Source Manager then Applications and Sources
must use the legacy calls. Refer to Chapter 12, "Operating System Dependencies".

Also see DSMInterface.cpp sample source here: http:/ /twain-samples.svn.sourceforge.net/

Using Operation Triplets

The DSM Entry() and DS_Entry() functions are used to communicate operations. An
operation is an action that the application or Source Manager invokes. Typically, but not always, it
involves using data or modifying data that is indicated by the last parameter (pDat a) in the
function call.

Requests for actions occur in one of these ways:

From To Using this function
The application The Source Manager =~ DSM Ent r y with the pDest parameter set to
NULL
The application The Source (via the DSM _Ent r y with the pDest parameter set to
Source Manager) point to a valid structure that identifies the
Source
The Source Manager The Source DS Entry

The desired action is defined by an operation triplet passed as three parameters in the function
call. Each triplet uniquely, and without ambiguity, specifies a particular action. No operation is
specified by more than a single triplet. The three parameters that make up the triplet are Data
Group, Data Argument Type, and Message ID. Each parameter conveys specific information.

Data Group (DG_xxxX)

Operations are divided into large categories by the Data Group identifier. The following are
the currently defined Data Groups in TWAIN:

* CONTROL (The identifier is DG_CONTROL.): These operations involve control of the
TWAIN session. An example where DG_CONTROL is used as the Data Group identifier is
the operation to open the Source Manager.

* IMAGE (The identifier is DG_| MAGE.): These operations work with image data. An
example where DG_| MACE is used as a Data Group is an operation that requests the
transfer of image data.

e AUDIO (The identifier is DG_AUDI O): These operations work with audio data (supported
by some digital cameras). An example where DG_AUDI Ois used as a Data Group is an
operation that requests the transfer of audio data.

Data Argument Type (DAT_XXXX)

This parameter of the triplet identifies the type of data that is being passed or operated upon.
The argument type may reference a data structure or a variable. There are many data
argument types. One example is DAT_| DENTI TY.

2-10 TWAIN 2.4 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_DS_sample01/src/DSMInterface.cpp?view=markup

The DAT_I DENTI TY type is used to identify a TWAIN element such as a Source. Data is
typically passed or modified through the pDat a parameter of the DSM Ent r y and

DSM Ent ry. In this case, the pDat a parameter would point to a data structure of type

TW_I DENTI TY. The data argument type begins with DAT_xxxX and the associated data
structure begins with TW xxxx and duplicates the second part of the name. This pattern is
followed consistently for most data argument types and their data structures. Any exceptions
are noted on the reference pages in Chapter 7, "Operation Triplets" and Chapter 8, "Data
Types and Data Structures".

Message ID (MSG_xxxx)

This parameter identifies the action that the application or Source Manager wishes to have
taken. There are many different messages such as M5SG_GET or MSG_SET. They all begin with
the prefix of MSG _.

Examples of Operation Triplets

* The triplet the application sends to the Source Manager to open the Source Manager
module is:

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

* The triplet that the application sends to instruct the Source Manager to display its Select
Source dialog box and thus allow the user to select which Source they plan to obtain data
from is:

DG_CONTROL / DAT_I DENTI TY / MSG_USERSELECT
* The triplet the application sends to transfer data from the Source into a file is:
DG | MAGE / DAT | MAGEFI LEXFER / MSG GET

The State-Based Protocol

The application, Source Manager, and Source must communicate to manage the acquisition of
data. It is logical that this process must occur in a particular sequence. For example, the
application cannot successfully request the transfer of data from a Source before the Source
Manager is loaded and prepared to communicate the request.

To ensure the sequence is executed correctly, the TWAIN protocol defines seven states that exist in
TWAIN sessions. A session is the period while an application is connected to a particular Source
via the Source Manager. The period while the application is connected to the Source Manager is
another unique session. At a given point in a session, the TWAIN elements of Source Manager and
Source each occupy a particular state. Transitions to a new state are caused by operations
requested by the application or Source. Transitions can be in the forward or backward direction.
Most transitions are single-state transitions. For example, an operation moves the Source Manager
from State 1 to State 2 not from State 1 to State 3. (There are situations where a two-state transition
may occur. They are discussed in Chapter 3, "Application Implementation".)

When viewing the state-based protocol, it is helpful to remember:

States 1,2, and 3
* Are occupied only by the Source Manager.

TWAIN 2.4 Specification 2-11

Chapter 2

* The Source Manager never occupies a state greater than State 3.

States 4,5,6,and 7
* Are occupied exclusively by Sources.
* A Source never has a state less than 4 if it is open. If it is closed, it has no state.

* If an application uses multiple Sources, each connection is a separate session and each
open Source “resides” in its own state without regard for what state the other Sources are
in.

The State Transition Diagram looks like this:

7
Transferring

Source: Transfer Data

1
Pre-Session

App: Acknowledge
end of transfer

App: Initiate
transfer

Source Manager not
loaded

6

Transfer Ready
App: Inquire Image
Information or Audio
Information

App: Load
Source Manager

| App: Unload Source
| Manager

2 Source: Transition
Source Manager when no more image
Loaded transfers are pending Source: Notify App

that transfer is ready

App: Get Entry Point

5
Source Enabled

App: Open
Source Manager

A

| App: Close Source
| Manager

Source: Show User
Interface

Source: Notify App
to Disable Source.
App: Disable Source

3
Source Manager
Opened
User: Select Source

User: Acquire
App: Enable Source

"~.__ App: Close Source 4
T~ Source Open

App: Open Source
Capability Negotiation

Source Manager States Source States

Figure 2-4 State Transition Diagram

2-12 TWAIN 2.4 Specification

The Description of the States

The following sections describe the states.

State 1 — Pre-Session

The Source Manager resides in State 1 before the application establishes a session with it.

At this point, the Source Manager code has been installed on the disk but typically is not
loaded into memory yet.

The only case where the Source Manager could already be loaded and running is under
Windows because the implementation is a DLL (hence, the same instance of the Source
Manager can be shared by multiple applications). If that situation exists, the Source Manager
will be in State 2 or 3 with the application that loaded it.

State 2 — Source Manager Loaded

The Source Manager now is loaded into memory. It is not open yet.
At this time, the Source Manager is prepared to accept other operation triplets from the
application.

State 3 — Source Manager Open

The Source Manager is open and ready to manage Sources.

The Source Manager is now prepared to provide lists of Sources, to open Sources, and to close
Sources.

The Source Manager will remain in State 3 for the remainder of the session until it is closed.
The Source Manager refuses to be closed while the application has any Sources open.

State 4 — Source Open
The Source has been loaded and opened by the Source Manager in response to an operation
from the application. It is ready to receive operations.

The Source should have verified that sufficient resources (i.e. memory, device is available,
etc.) exist for it to run.

The application can inquire about the Source’s capabilities (i.e. levels of resolution, support of
color or black and white images, automatic document feeder available, etc.). The application
can also set those capabilities to its desired settings. For example, it may restrict a Source
capable of providing color images to transferring black and white only.

Note: Inquiry about a capability can occur while the Source is in States 4, 5, 6, or 7. But, an
application can set a capability only in State 4 unless special permission is negotiated
between the application and Source.

State 5 — Source Enabled

The Source has been enabled by an operation from the application via the Source Manager
and is ready for user-enabled transfers.

If the application has allowed the Source to display its user interface, the Source will do that
when it enters State 5.

State 6 — Transfer is Ready

The Source is ready to transfer one or more data items (images) to the application.

TWAIN 2.4 Specification 2-13

Chapter 2

The transition from State 5 to 6 is triggered by the Source notifying the application that the
transfer is ready.

Before initiating the transfer, the application must inquire information about the image
(resolution, image size, etc.). If the Source supports audio, then before transferring the image,
the Application must transfer all the audio snippets that are associated with the image.

It is possible for more than one image to be transferred in succession. This topic is covered
thoroughly in Chapter 4, "Advanced Application Implementation".

State 7 — Transferring

The Source is transferring the image to the application.
The transfer mechanism being used was negotiated during State 4.

The transfer will either complete successfully or terminate prematurely. The Source sends the
appropriate Return Code indicating the outcome.

Once the Source indicates that the transfer is complete, the application must acknowledge the
end of the transfer.

A TWAIN 2.0 compliant Application tests its TW_ | DENTI TY .SupportedGroups for DF_DSM after
a call to DG_CONTROL /DAT_PARENT/M5G_OPENDSMand if found it issues a call to DG_CONTRCL
/ DAT_ENTRYPO NT / M5G_GET.

A TWAIN 2.0 compliant Source is sent DG_CONTRCL / DAT_ENTRYPO NT / M5G_SET; it tests the
Application’s TW_ | DENTI TY. Suppor t edG oups for DF_DSM2 and DF_APP2.

Capabilities

2-14

One of TWAIN's benefits is it allows applications to easily interact with a variety of acquisition
devices. Devices can provide image or audio data. For instance,

Some devices have automatic document feeders.

Some devices are not limited to one image but can transfer multiple images.

Some devices support color images.

Some devices offer a variety of halftone patterns.

Some devices support a range of resolutions while others may offer different choices.

Some devices allow the recording of audio data associated with an image.

Developers of applications need to be aware of a Source’s capabilities and may influence the
capabilities that the Source offers to the application’s users. To do this, the application can perform
capability negotiation. The application generally follows this process:

Determine if the selected Source supports a particular capability.

Inquire about the Current Value for this capability. Also, inquire about the capability’s
Default Value and the set of Available Values that are supported by the Source for that
capability.

Request that the Source set the Current Value to the application’s desired value. The Current
Value will be displayed as the current selection in the Source’s user interface.

TWAIN 2.4 Specification

* Limit, if needed, the Source’s Available Values to a subset of what would normally be offered.
For instance, if the application wants only black and white data, it can restrict the Source to
transmit only that. If a limitation effects the Source’s user interface, the Source should modify
the interface to reflect those changes. For example, it may gray out options that are not
available because of the application’s restrictions.

* Verify that the new values have been accepted by the Source.

TWAIN capabilities are divided into three groups:

* CAP_xxxx: Capabilities whose names begin with CAP are capabilities that could apply to any
general Source. Such capabilities include use of automatic document feeders, identification of
the creator of the data, etc.

* | CAP_xxxx: Capabilities whose names begin with ICAP are capabilities that apply to image
devices. The “1” stands for image. (When TWAIN is expanded to support other data transfer
such as text or fax data, there will be TCAPs and FCAPs in a similar style.)

* ACAP_xxxx: Capabilities whose names begin with ACAP are capabilities that apply to
devices that support audio. The “A” stands for audio.

Capability Containers

Capabilities exist in many varieties but all have a Default Value, Current Value, and may have
other values available that can be supported if selected. To help categorize the supported values
into clear structures, TWAIN defines four types of containers for capabilities.

Name of the Data Type of Contents
Structure for the Container

TW ONEVALUE A single value whose current and default values are
coincident. The range of available values for this type of
capability is simply this single value. For example, a
capability that indicates the presence of a document
feeder could be of this type.

TW ARRAY An array of values that describes the current logical
item. The available values may be a larger array of
values. For example, a list of the names, such as the
supported capabilities list returned by the
CAP_SUPPORTEDCAPS capability, would use this type
of container.

TW RANGE Many capabilities allow users to select their current
value from a range of regularly spaced values. The
capability can specify the minimum and maximum
acceptable values and the incremental step size between
values. For example, resolution might be supported
from 100 to 600 in steps of 50 (100, 150, 200, ..., 550, 600).

TWAIN 2.4 Specification 2-15

Chapter 2

Name of the Data Type of Contents
Structure for the Container

TW ENUMERATI ON This is the most general type because it defines a list of
values from which the Current Value can be chosen. The
values do not progress uniformly through a range and
there is not a consistent step size between the values. For
example, if a Source’s resolution options did not occur in

even step sizes then an enumeration would be used (for
example, 150, 400, and 600).

In general, most capabilities can have more than one of these containers applied to them
depending on how the particular Source implements the capability. The data structure for each of
these containers is defined in Chapter 8, "Data Types and Data Structures". A complete table with
all defined capabilities is located in Chapter 10, "Capabilities". A few of the capabilities must be
supported by the application and Source. The remainder of the capabilities are optional.

Capability Negotiation and Container Types

It is very important for Application and Data Source developers to note that Container types are
dictated by the Data Source in all cases where a value is queried. Also the allowable container
types of each capability are clearly defined in Chapter 10, "Capabilities", of the TWAIN
Specification. The only time it is appropriate for the calling Application to specify a container type
is during the MSG_SET operation. At that time, the Application must also consider the allowable
containers and types for the particular capability.

It is recommended that an Application use the containers for MSG_SET that it received in
MSG_CET.

Capability Containers and String Values
The only containers that can possibly hold a string are the following:
TW ENUMERATI ON

TW ARRAY
TW ONEVAL UE

It is not possible or useful to use this type in a TW RANGE. In fact, there is no case where a
capability has been defined in Chapter 10, "Capabilities", of the TWAIN Specification where a
TW RANGE is allowed for a TW STRxxXxXx type of value.

There are four types of TWAIN strings defined for developer use:

TW STR32
TW STR64
TW STR128
TW STR256

As of version 1.7, only the following capabilities accept strings:

CAP_AUTHOR, TW ONEVALUE, TW STR128

2-16 TWAIN 2.4 Specification

CAP_CAPTI ON, TW ONEVALUE, TW STR255
CAP_TI MEDATE, TW ONEVALUE, TW STR32
| CAP_HALFTONES, TW ONEVALUE/ TW ENUMERATI ON/ TW ARRAY, TW STR32

The definition of the various container types could be confusing. For example, the definition of a
TW ONEVALUE is as follows:

/* TWON_ONEVALUE. Container for one value. */
typedef struct {

TW U NT16 |tenType;

TW U NT32 Item
} TW ONEVALUE, FAR * pTW ONEVALUE;

At first glance, it is tempting to try placing the string into this container by assigning “Item” to be
a pointer. This is not at all consistent with the implementation of other structures in the
specification and introduces a host of problems concerning management of the memory occupied
by the string. (See TW | DENTI TY for consistent TWAIN string use)

The correct and consistent method of holding a string in a TWAIN container is to ensure the string
is embedded in the container itself. Either a new structure is defined within the developers code,
or the added size is considered when allocating the container.

The following examples are designed to demonstrate possible methods of using TWAIN Strings in
Containers. These examples are suitable for demonstration only, and require refinement to be put
to real use.

Example 1:

TW ONEVAL UE structure defined for holding a TW STR32 value

/* TWON_ONEVALUESTR32. Cont ai ner for one val ue hol di ng TW STR32. */
typedef struct {

TW U NT16 |teniype;

TWSTR32 Item
} TWONEVALUESTR32, FAR * pTW ONEVALUESTR32;

Note: Pay attention to two-byte structure packing when defining custom container structures.

This clearly demonstrates where the memory is allocated and where the string resides. The data
source does not have to be concerned with how the string is managed locally, and the application
does not have to be concerned with managing the string memory or contents.

Example 2:

TW ONEVAL UE structure allocated and filled with consideration of holding a TW STR32 value
(Windows Example)

HGLOBAL Al | ocat eAndFi | | OneVal ueStr32(const pTW STR32 plnString)

{
DWORD dwCont ai ner Si ze = 0l ;

TWAIN 2.4 Specification 2-17

Chapter 2

2-18

HGLOBAL hCont ai ner = NULL;
pTW ONEVALUE pOneVal ue = NULL;
PTW STR32 pString = NULL;
assert(plnString);

/1 Note: This calculation will yield a size approxi mately one
/1l pointer larger than that required for this container

/1l (sizeof (TWUINT32)). For sinplicity the size difference
/1l is negligible. The first TWSTR32 itemshall be | ocated
/1 inrediately after the pEnum >Def aul t | ndex nenber.

dwCont ai ner Si ze = si zeof (TW ONEVALUE) + si zeof (TW STR32);
hCont ai ner = d obal Al l oc(GPTR, dwCont ai ner Si ze);

i f (hCont ai ner)

{
pOneVal ue = (pTW ONEVALUE) d obal Lock(hCont ai ner) ;
i f (pOneVval ue)
{
pOneVal ue->ltenlype = TWIY_STR32;
pString = (pTW.STR32) & OneVal ue->1tem
mencpy(pString, plnString, sizeof (TWSTR32));
d obal Unl ock(hCont ai ner) ;
pOneVal ue = NULL;
pString = NULL;
}
}
return hCont ai ner;
}
Example 3:

TW ENUMERATI ONstructure allocated with consideration of holding TW STR32 values (Windows
Example)

HGLOBAL Al | ocat eEnunerati onStr32(TW. U NT32 unNunitens)

{
DWORD dwCont ai ner Si ze = 0l ;
HG_OBAL hCont ai ner = NULL;
pTW ENUVERATI ON pEnum = NULL;

/1 Note: This calculation will yield a size approxi mately

/1 one pointer larger than that required for this container

/1 (sizeof (pTWUINT8)). For sinplicity the size difference is
/1 negligible. The first TWSTR32 itemshall be | ocated

/1 imediately after the pEnum >Def aul t| ndex menber.

dwCont ai ner Si ze = si zeof (TW ENUMERATI ON) + (si zeof (TW STR32) *
unNum t ens) ;

hCont ai ner = d obal Al l oc(GPTR, dwCont ai ner Si ze);

TWAIN 2.4 Specification

i f (hCont ai ner)

{
pEnum = (pTW ENUMVERATI ON) d obal Lock(hCont ai ner) ;
i f (pENUM
{
pEnum->I t enifype = TWY_STR32;
PEnum->Num t ens = unNuml t ens;
d obal Unl ock(hCont ai ner) ;
pEnum = NULL,;
}
}
return hCont ai ner
}
Example 4

Indexing a string from an Enumeration Container

pTW STR128 | ndexSt r 128Fr onEnuner ati on(pTW ENUVERATI ON pEnum TW Ul NT32
unl ndex)

{
BYTE *pBegi n = (BYTE *) &Enum->Itenli st[0];
assert (pEnum->Num t ens > unl ndex) ;
assert (pEnum->It enfype == TWY_STR128) ;
pBegi n += (unl ndex * sizeof (TW STR128));
return (pTW STR128) pBegi n;

Modes Available for Data Transfer

There are three different modes that can be used to transfer data from the Source to the
application: native, disk file, and buffered memory.

Note: At this time, TWAIN support for audio only allows native and disk file transfers.)

Native

Every Source must support this transfer mode. It is the default mode and is the easiest for an
application to implement. However, it is restrictive (i.e. limited to the DIB, PICT, or TIFF formats
and limited by available memory).

The format of the data is platform-specific:

* Windows: DIB (Device-Independent Bitmap)

* Macintosh: A TIFF image file in memory if both application and data source are version 2.4 or
later. A PICT image in memory if either the application or the data source is TWAIN 2.3 and
earlier.

* Linux: A TIFF image file in memory

TWAIN 2.4 Specification 2-19

Chapter 2

2-20

The Source allocates a single block of memory and writes the image data into the block. It passes a
pointer to the application indicating the memory location. The application is responsible for
freeing the memory after the transfer.

Disk File

A Source is not required to support this transfer mode but it is recommended.

The application creates the file to be used in the transfer and ensures that it is accessible by the
Source for reading and writing.

A capability exists that allows the application to determine which file formats the Source supports.
The application can then specify the file format and file name to be used in the transfer.

The disk file mode is ideal when transferring large images that might encounter memory
limitations with Native mode. Disk File mode is simpler to implement than the buffered mode
discussed next. However, Disk File mode is a bit slower than Buffered Memory mode and the
application must be able to manage the file after creation.

Buffered Memory

Every Source must support this transfer mode.

The transfer occurs through memory using one or more buffers. Memory for the buffers are
allocated and deallocated by the application.

The data is transferred as an unformatted bitmap. The application must use information available
during the transfer (TW_| MAGEI NFOand TW | MAGEMEMXFER) to learn about each individual
buffer and be able to correctly interpret the bitmap.

If using the Native or Disk File transfer modes, the transfer is completed in one action. With the
Buffered Memory mode, the application may need to loop repeatedly to obtain more than one
buffer of data.

Buffered Memory transfer offers the greatest flexibility, both in data capture and control.
However, it is the least simple to implement.

TWAIN 2.4 Specification

Application Implementation

Chapter Contents

Levels of TWAIN Implementation............ i i i, 3-1
Installation of the Source Manager Software 3-2
Changes Needed to Prepare fora TWAIN Sessionoo... 3-2
Controlling a TWAIN Session from Your Application, 3-9
Error Handling. 3-26
Best Practices for TWAIN Compliant Applications................. 3-28
Legacy Issues o 3-40

This chapter provides the basic information needed to implement TWAIN at a minimum level.

Advanced topics are discussed in Chapter 4, "Advanced Application Implementation". They
include how to take advantage of Sources that offer automatic feeding of multiple images.

For OS specific requirements refer to Chapter 12, "Operating System Dependencies".

Levels of TWAIN Implementation

Application developers can choose to implement TWAIN features in their application along a
range of levels.

* At the minimum level: The application does not have to take advantage of capability
negotiation or transfer mode selection. Using TWAIN defaults, it can just acquire a single
image in the Native mode.

* At a greater level: The application can negotiate with the Source for desired capabilities or
image characteristics and specify the transfer arrangement. This gives the application more
control over the type of image it receives. To do this, developers should follow the
instructions provided in this chapter and use information from Chapter 4, "Advanced
Application Implementation", as well.

* At the highest level: An application may choose to negotiate capabilities, select transfer
mode, and create/ present its own user interfaces instead of using the built-in ones provided

TWAIN 2.4 Specification 3-1

Chapter 3

with the Source Manager and Source. Again, refer to this chapter and Chapter 4, "Advanced
Application Implementation".

Installation of the Source Manager Software

The TWAIN Source Manager is an Open Source project maintained and owned by the TWAIN
Working Group (TWG). Binaries are built and distributed by the TWG for a few Operating
Systems. Applications are responsible for distributing and installing the most recent release of the
Source manager software available from twain.org.

For OS specific requirements refer to Chapter 12, "Operating System Dependencies".

Changes Needed to Prepare for a TWAIN Session

The following areas of the application must be changed before a TWAIN session can begin. The
application developer must:

* Alter the application’s user interface to add Select Source and Acquire menu choices.

* Include the file called TWAI N. H in your application.

* Alter the application’s event loop.

Alter the Application’s User Interface to Add Select Source and Acquire Options

As mentioned in the Chapter 2, "Technical Overview", the application should include two menu
items in its File menu: Select Source... and Acquire.... It is strongly recommended that you use
these phrases since this consistency will benefit all users.

Windows Macintosh
New New...
Open... Open...
Save Close
Acquire... Save
Select Source... Save As...

i Acquire...
Print
Print Setup... Select Source...

i Page Setup...
Exit Print...

Quit

Figure 3-1 User Interface for Selecting a Source and Acquiring Options

Note the following:

3-2 TWAIN 2.4 Specification

When this is selected: =~ The application does this:

Select Source... The application requests that the Source Manager’s Select
Source Dialog Box appear (or it may display its own version).
After the user selects the Source they want to use, control
returns to the application.

Acquire... The application requests that the Source display its user
interface. (Again, the application can create its own version of
a user interface or display no user interface.)

Detailed information on the operations used by the application to successfully acquire data is
provided later in this chapter in “Controlling a TWAIN Session from Your Application” on
page 3-9.

Include the TWAIN.H File in Your Application

The TWAI N. Hfile that is shipped with this TWAIN Developer’s Toolkit contains all of the critical
definitions needed for writing a TWAIN-compliant application or Source. Be sure to include it in
your application’s code and print out a copy to refer to while reading this chapter.

The TWAI N. Hfile contains:

Category Prefix for each item

Data Groups DG_

Data Argument Types DAT_

Messages MBG_

Capabilities CAP_, | CAP_, or ACAP_

Return Codes TWRC

Condition Codes TWCC

Type Definitions T™W.

Structure Definitions T™W.

Entry points These are DSM Ent ry and DS_Entry

In addition, there are many constants defined in TWAI N. Hwhich are not listed here.

Alter the Application’s Event Loop

The application passes the request for all actions to the Source Manager via the DSM_Entry
function call, which contains an operation triplet describing the requested action. In code form, the
DSM_Entry function looks like this:

TW.U NT16 TW CALLI NGSTYLE DSM Entry

(pPTWIDENTITY pOigin, /1 source of nmessage
pTW I DENTITY pDest, /] destination of nmessage
TW_ Ul NT32 DG, /] data group | D: DG XXXX
TW Ul NT16 DAT, /] data argunent type: DAT_XXXX
TW Ul NT16 MBG /1 message | D: MBG_XXXX

TWAIN 2.4 Specification 3-3

Chapter 3

3-4

TW MEMREF pDat a /1l pointer to data
)

The DG DAT, and MSG parameters contain the operation triplet. The parameters must follow these
rules:

pOrigin
References the application’s TW | DENTI TY structure. The contents of this structure must not
be changed by the application from the time the connection is made with the Source Manager
until it is closed.

pDest
Set to NULL if the operation’s final destination is the Source Manager.

Otherwise, set to point to a valid TW | DENTI TY structure for an open Source.

DG_xxxx
Data Group of the operation. Currently, only DG_CONTRCL, DG_I MAGE, and DG_AUDI Oare
defined. Custom Data Groups can be defined.

DAT_XXXx
Designator that uniquely identifies the type of data object (structure or variable) referenced by
pDat a.

MSG_XXXX

Message specifies the action to be taken.

pData

Refers to the TW xxxX structure or variable that will be used during the operation. Its type is
specified by the DAT_xxxX. This parameter should always be typecast to TW MEMREF when it
is being referenced.

Operation Triplets - Application to Source Manager

The following operation triplets can be sent from the application to be consumed by the Source
Manager. They all use the DG_CONTRCL data group and they use three different data argument
types: DAT_I DENTI TY, DAT_PARENT, and DAT_STATUS. The following table lists the data
group, data argument type, and messages that make up each operation. The list is in alphabetical
order not the order in which they are typically called by an application. Details about each
operation are available in reference format in Chapter 7, "Operation Triplets".

Control Operations from Application to Source Manager

DG_CONTROL / DAT_IDENTITY

MSG_CLOSEDS : Prepare specified Source for unloading
MSG_GETDEFAULT : Get identity information of the default Source
MSG_GETFI RST : Get identity information of the first available Source
MSG_GETNEXT : Get identity of the next available Source
MSG_OPENDS : Load and initialize the specified Source

MSG_SET : Set identity information of the default Source

TWAIN 2.4 Specification

MSG_USERSELECT : Present “Select Source” dialog

DG_CONTROL / DAT_PARENT

M5G_CLOSEDSM: Prepare Source Manager for unloading
M5G_OPENDSM: Initialize the Source Manager

DG_CONTROL / DAT_STATUS

MBG_GET : Return Source Manager’s current Condition Code

Operation Triplets - Application to Source

The next group of operations are sent to a specific Source by the application. These operations are
still passed via the Source Manager using the DSM Ent ry call. The first set of triplets use the
DG_CONTRCL identification for their data group. These are operations that could be performed on
any kind of TWAIN device. The second set of triplets use the DG_| MAGE identification for their
data group which indicates these operations are specific to image data. Details about each
operation are available in reference format in Chapter 7, "Operation Triplets".

Control Operations from Application to Source

DG_CONTROL / DAT_CAPABILITY

MSG_GET Return a Capability’s available value(s) including the current
and default values

MSG_GETCURRENT Get a Capability’s current value

MBG_GETDEFAULT Get a Capability’s preferred default value (Source specific)

MBG_RESET Change a Capability’s current value to its TWAIN-defined
default

MBG_SET Change a Capability’s current value only (TWAIN 2.2 and
higher)

MBG_SETCONSTRAI NT Change a Capability’s current, default, and available value(s)

(Same functionality as MSG_SET prior to TWAIN 2.2)

DG_CONTROL / DAT_DEVICEEVENT

MSG_CET: Get an event from the Source (issue this call only in response
to a DG_CONTROL / DAT_NULL / MSG_DEVI CEEVENT from
the Source)

DG_CONTROL / DAT_EVENT
MBG_PROCESSEVENT Pass an event to the Source from the application

DG_CONTROL / DAT_FILESYSTEM

M5G_AUTOVATI CCAPTUREDI RECTORY
Select directory to receive automatically captured images

MSG_CHANGEDI RECTORY Change the current domain, host, directory, or device.
MSG_COPY Copy files

MSG_CREATEDI RECTORY Create a directory

MSG _DELETE Delete a file or directory

TWAIN 2.4 Specification 3-5

Chapter 3

3-6

M5G_FORVATMEDI A Format a storage device

MSG_GETCLOSE Close a context created by a call to M5SG_GETFI LEFI RST
MBG_GETFI RSTFI LE Get the first file in a directory

MSG_GETI NFO Get information about the current file context
MSG_RENAME Rename a file

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

MSG_PASSTHRU Special command for the use by Source vendors when
writing diagnostic Applications

DG_CONTROL / DAT_PENDINGXFERS

MBG_ENDXFER Application acknowledges or requests the end of data
transfer

MBG_GET Return the number of transfers the Source is ready to supply

MBG_RESET Set the number of pending transfers to zero

MBG_STCOPFEEDER Stop ADF without ending session

DG_CONTROL / DAT_SETUPFILEXFER

MSG_GET Return info about the file that the Source will write the
acquired data into

MSG_GETDEFAULT Return the default file transfer information

MSG_RESET Reset current file information to default values

MSG_SET Set file transfer information for next file transfer

DG_CONTROL / DAT_SETUPMEMXFER

MSG_GET Return Source’s preferred, minimum, and maximum transfer
buffer sizes

DG_CONTROL / DAT_STATUS

MSG_GET Return the current Condition Code from specified Source
DG_CONTROL / DAT_USERINTERFACE

MSG_DI SABLEDS Cause Source’s user interface to be taken down
MBG_ENABLEDS Cause Source to prepare to display its user interface
DG_CONTROL / DAT_XFERGROUP

MSG_GET Return the Data Group (currently DG _| MAGE or a custom
data group) for the upcoming transfer

There are additional DG_CONTROL operations for communications between the Source Manager
and the Source. They are discussed in Chapter 5, "Source Implementation".

Image Operations from Application to Source

DG_IMAGE / DAT_CIECOLOR
MSG_GET Return the CIE XYZ information for the current transfer

TWAIN 2.4 Specification

DG_IMAGE / DAT_GRAYRESPONSE

MSG_RESET Reinstate identity response curve for grayscale data
MBG_SET Source uses specified response curve on grayscale data
DG_IMAGE / DAT_IMAGEFILEXFER

MSG_GET Initiate image acquisition using the Disk File transfer mode
DG_IMAGE / DAT_IMAGEINFO

MBG_GET Return information that describes the image for the next
transfer

DG_IMAGE / DAT_IMAGELAYOUT

MSG_GET Describe physical layout / position of “original” image
MSG_GETDEFAULT Default information on the layout of the image
MSG_RESET Set layout information for the next transfer to defaults
MSG_SET Set layout for the next image transfer

DG_IMAGE / DAT_IMAGEMEMXFER

MBG_GET Initiate image acquisition using the Buffered Memory
transfer mode

DG_IMAGE / DAT_IMAGEMEMFILEXFER

MSG_GET Initiate image acquisition using the Buffered Memory
transfer mode, but transferring the same data one would
save to a file

DG_IMAGE / DAT_IMAGENATIVEXFER

MBG_GET Initiate image acquisition using the Native transfer mode

DG_IMAGE / DAT_JPEGCOMPRESSION

M5G_GET Return JPEG compression parameters for current transfer
MSG_GETDEFAULT Return default JPEG compression parameters
MSG_RESET Use Source’s default JPEG parameters on JPEG transfers
MSG_SET Use specified JPEG parameters on JPEG transfers

DG_IMAGE / DAT_PALETTES

MBG_GET Return palette information for current transfer

MBG_GETDEFAULT Return Source’s default palette information for current pixel
type

MSG_RESET Use Source’s default palette for transfer of this pixel type

MBG_SET Use specified palette for transfers of this pixel type

DG_IMAGE / DAT_RGBRESPONSE
MSG_RESET Use Source’s default (identity) RGB response curve
MSG_SET Use specified response curve for RGB transfers

TWAIN 2.4 Specification 3-7

Chapter 3

3-8

DG_AUDIO / DAT_AUDIOFILEXFER
MSG_GET Transfers audio data in file mode

DG_AUDIO / DAT_AUDIOINFO

MSG_GET Gets information about the current transfer

DG_AUDIO / DAT_AUDIONATIVEXFER

MSG_GET Transfers audio data in native mode

DSM_Entry Parameters

The parameters for the DG_xxxx, DAT_xxxX, and MSG_xxxx fields are determined by the
operation triplet. The other parameters are filled as follows:

pOrigin
Refers to a copy of the application’s TW | DENTI TY structure.

pDest

If the operation’s destination is the Source Manager: Always holds a value of NULL. This
indicates to the Source Manager that the operation is to be consumed by it not passed on to a
Source.

If the operation’s destination is a Source: This parameter references a copy of the Source’s
TW_I DENTI TY structure that is maintained by the application. The application received this
structure in response to the DG_CONTROL / DAT_I DENTI TY / MSG_OPENDS operation sent
from the application to the Source Manager. This is discussed more in the next section
(“Controlling a TWAIN Session from Your Application” - State 3 to 4).

pDat a

Always references a structure or variable corresponding to the TWAIN type specified by the
DAT_xxxx parameter. Typically, but not always, the data argument type name corresponds to
a TW xxxx data structure name. For example, the DAT_| DENTI TY argument type uses the
corresponding TW | DENTI TY data structure. All data structures can be seen in the file called
TWAI N. H. The application is responsible for allocating and deallocating the structure or
element and assuring that pDat a correctly references it.

Note that there are two cases when the Source, rather than the application, allocates a
structure that is used during an operation.

- Oneoccurs during DG_CONTROL / DAT_CAPABI LI TY / MSG_GET, MSG_GETCURRENT,
MSG_CGETDEFAULT, and M5G_RESET operations. The application still allocates *pDat a
but the Source allocates a structure referenced by *pDat a called a “container structure”.

- The other occurs during the DG_| MAGE / DAT_JPEGCOVPRESSI ON operations. The
topic of data compression is covered in Chapter 4, "Advanced Application
Implementation".

In all cases, the application still deallocates all structures.

Application Callback Function

The following TWAIN triplet is used, by the application, to register a function to receive callback
messages from the Source:

DG _CONTROL / DAT_CALLBACK / MSG_REG STER CALLBACK

TWAIN 2.4 Specification

Note that the older event loop method still works on Windows, but it is recommended to use
Callback. For the older event loop method refer to the TWAIN 1.9 Specification for
implementation. Applications will register the callback after opening the DS using the
DG_CONTRCL/ DAT_CALLBACK/ MSG_REG STER_CALLBACK triplet.

The callback function takes the form:

TW U NT16 TWAI N_cal | back(pTW.I DENTI TY pOri gi n,
pTW. I DENTI TY pDest,
TW U NT32 DG,
TW. Ul NT16 DAT,
TW U NT16 MsSG
TW MEMREF pDat a)

{
/'l The nmessage shoul d not be processed here.
/1 Aflag is set so the Message can be processed in the sane
t hread t hat Enabl ed the Data Source.
m _Message = MSG
return TWRC SUCCESS; // or failure etc
}

An application registers the callback function in the following fashion:

TW CALLBACK cal | back = { 0 };
cal | back. Cal | BackProc = TWAI N_cal | back;
Result = DSM Entry(&appl dentity, NULL,
DG _CONTROL, DAT_CALLBACK, MSG REQ STER_CALLBACK,
(TW_.MEMREF) &cal | back) ;

The application passes the request for the action to the Source Manager via the DSM Ent ry
function call which contains an operation triplet describing the requested action.

Controlling a TWAIN Session from Your Application

In addition to the preparations discussed at the beginning of this chapter, the application must be
modified to actually initiate and control a TWAIN session.

The session consists of the seven states of the TWAIN protocol as introduced in the Technical
Overview. However, the application is not forced to move the session from State 1 to State 7
without stopping. For example, some applications may choose to pause in State 3 and move
among the higher states (4 - 7) to repeatedly open and close Sources when acquisitions are
requested by the user. Another example of session flexibility occurs when an application transfers
multiple images during a session. The application will repeatedly move the session from State 6
to State 7 then back to State 6 and forward to State 7 again to transfer the next image.

For the sake of simplicity, this chapter illustrates moving the session from State 1 to State 7 and
then backing it out all the way from State 7 to State 1. The diagram on the next page shows the
operation triplets that are used to transition the session from one state to the next. Detailed

information about each state and its associated transitions follow. The topics include:

* State 1 to 2 - Load the Source Manager and Get the DSM _Ent ry

TWAIN 2.4 Specification 3-9

Chapter 3

* State 2 to 3 - Open the Source Manager

* State 3 - Select the Source

* State 3 to 4 - Open the Source

* State 4 - Negotiate Capabilities with the Source

* State 4 to 5 - Request the Acquisition of Data from the Source

* State 5 to 6 - Recognize that the Data Transfer is Ready

* State 6 to 7 - Start and Perform the Transfer

* State 7 to 6 to 5 - Conclude the Transfer

* State 5 to 1 - Disconnect the TWAIN Session

Note: Sources and Applications that support the DAT_FI LESYSTEMoperation may negotiate
and select different device contexts immediately after the opening of a Source. For

example, an Application may choose to browse through the stored images on a digital
camera, rather than treat it as a real-time capture device.

3-10 TWAIN 2.4 Specification

TWAIN States

1
Pre-Session

Source Manager not loaded

Load Source Manager
Win: DLL
Mac: Code Resource

I Unload
Source Manager

2
Source Manager
Loaded

Source Manager is ready to
establish a session with App;
Get Entry Point:
DSM_Entry()

DG_CONTROL/ A

DAT_PARENT/

MSG_OPENDSM |

| DG_CONTROL/
DAT_PARENT/

MSG_CLOSEDSM

3
Source Manager
Open

Session Established;
Select Source...

DG_CONTROL/
DAT_IDENTITY/
MSG_OPENDS

Source Manager
States

Figure 3-2 TWAIN States

7
Transferring

Data is Transfered

DG_CONTROL/
DAT_PENDINGXFERS/
MSG_ENDXFER

DG_IMAGE/
DAT_IMAGEXxXXFER/
MSG_GET

Transfer Ready

Source ready to transfer image(s);
TW_PENDINGXFERS.Count !=0;

App Inquire info on the transfer:
TW_IMAGEINFO

if TW_PENDINGXFERS.Count = 0

Transition is Automatic |
else DG_CONTROL/

DAT_PENDINGXFERS/]

MSG_RESET App Receives

MSG_XFERREADY

Source Enabled

if ShowU|
Source User Interface

else

Source Begins Data

Acquisition Process

DG_CONTROL/
DAT_USERINTERFACE/ 1 A
MSG_DISABLEDS
(if TW_USERINTERFACE. |
ShowUIl = TRUE
send only after app receives |
MSG_CLOSEDSREQ) I

DG_CONTROL/
DAT_USERINTERFACE/

DG_CONTROL/ MSG_ENABLEDS

DAT_IDENTITY/
=~ _MSG_CLOSEDS

|
|
v

4
Source Open
Source Loaded in Memory;

Capability Negotiation;
Acquire...

Source States

State 1to 2 - Load the Source Manager and Get the DSM _Ent ry

The application must load the Source Manager before it is able to call its DSM_Ent r y point.

Operations Used:

No TWAIN operations are used for this transition. Instead it is an OS specific operation, please

refer to the Operating System chapter.

TWAIN 2.4 Specification

3-11

Chapter 3

State 2 to 3 - Open the Source Manager

The Source Manager has been loaded. The application must now open the Source Manager.
One Operation is Used:

DG_CONTROL / DAT_PARENT / M5G_OPENDSM

pOrigin

The application must allocate a structure of type TW | DENTI TY and fill in all fields except for
the | d field. Once the structure is prepared, this pOri gi n
parameter should point at that structure.

During the MSG_OPENDSMoperation, the Source Manager will fill in the Id field with a unique
identifier of the application. The value of this identifier is only
valid while the application is connected to the Source Manager.

The application must save the entire structure. From now on, the structure will be referred to
by the pOrigin parameter to identify the application in every
call the application makes to DSM Entry().

The TW_ I DENTI TY structure is defined in the TWAI N. H file but for quick reference, it looks
like this:

typedef struct {
TW Ul NT32 Id; /* Uni que nunber assigned by DSM f or
i dentification*/
TW VERSI ON Ver si on;

TW Ul NT16 Pr ot ocol Maj or;
TW Ul NT16 Pr ot ocol M nor;
TW Ul NT32 Support edG oups
TW STR32 Manuf act ur er;
TW STR32 Pr oduct Fani | y;
TW STR32 Pr oduct Nane;

} TW.I DENTI TY, FAR *pTW. | DENTI TY;

pDest
Set to NULL indicating the operation is intended for the Source Manager.

pDat a

Typically, you would expect to see this point to a structure of type TW PARENT but this is not
the case. This is an exception to the usual situation where the DAT field of the triplet identifies
the data structure for pDat a.

* On Windows: pDat a points to the window handle (hWhd) that will act as the Source’s
“parent”. The Source Manager will maintain a copy of this window handle for posting
messages back to the application.

* On Macintosh: pDat a should be a NULL value.
* On Linux: pDat a should be a NULL value.

How to Initialize the TW_IDENTITY Structure

Here is a Windows example of code used to initialize the application’s TW | DENTI TY structure.

TW. I DENTI TY Appl D; /'l App’s identity structure
Appl D. 1d = 0; /1 Initialize to O (Source Manager

3-12 TWAIN 2.4 Specification

/1 will assign real val ue)
Appl D. Ver si on. Maj or Num = 3; // Your app's version nunber
Appl D. Ver si on. M nor Num = 5;
Appl D. Ver si on. Language = TW.G_ENGLI SH_USA,;
Appl D. Versi on. Country = TWCY_USA,
I strcpy (ApplD. Version.Info, "Your App's Version String");
Appl D. Prot ocol Maj or = 2; /1 Use yours not the one fromtwain.h
Appl D. Prot ocol M nor = 2; /1 Use yours not the one fromtwain.h
Appl D. Support edG oups = DF_APP2 | DG | MAGE | DG _CONTROL;
| strcpy (Appl D. Manuf acturer, "App's Manufacturer");
I strcpy (Appl D. Product Fam |y, "App's Product Famly");
| strcpy (Appl D. Product Nane, "Specific App Product Name");

On Windows: Using DSM_Entry to open the Source Manager
TWUI NT16 rc;
rc = (*pDSM Entry) (&Appl D,

NULL,

DG_CONTRCL,

DAT_PARENT,

MSG_OPENDSM

(TW MEMREF) &hWhd) ;

where ApplD is the TW | DENTI TY structure that the application set up to identify itself and
hWnd is the application’s main window handle.

On Macintosh: Using DSM_Entry to open the Source Manager
rc = DSM Ent ry(&Appl D,

NULL,
DG_CONTRCL,
DAT_PARENT,
MSG_OPENDSM
NULL) ;
On Linux: Using DSM_Entry to open the Source Manager
TW.UI NT16 rc;
rc = (*pDSM _Entry) (&Appl D,
NULL,
DG_CONTRCL,
DAT_PARENT,
MSG_OPENDSM
NULL) ;

where ApplD is the TW | DENTI TY structure that the application set up to identify.
If your data source requires resources, it is responsible for loading and unloading them at run

time. The Source Manager no longer manages resources automatically.

State 3 - Select the Source

The Source Manager has just been opened and is now available to assist your application in the
selection of the desired Source.

TWAIN 2.4 Specification 3-13

Chapter 3

3-14

DG_CONTROL / DAT_PARENT / MSG_OPENDSM If it finds DF_DSM2 then the Application must
issue the DG_CONTROL / DAT_ENTRYPO NT / MSG_GET call before it opens the Source. This takes
the form:

DG_CONTROL / DAT_ENTRYPO NT / M5G_GET

pOrigin
Points to the application’s TW | DENTI TY structure.

pDest
Set to NULL.

pData
Points to a structure of type TW ENTRYPO NT

The Source Manager returns pointers to functions that the Application must use when managing
memory that is either freed or allocated by the Source.

One Operation is Used:

DG_CONTROL / DAT_| DENTI TY / MBG_USERSELECT

pOrigin
Points to the application’s TW | DENTI TY structure. The desired data type should be

specified by the application. This was done when you initialized the Suppor t edG oups
field in your application’s TW | DENTI TY structure.

This causes the Source Manager to make available for selection by the user only those Sources
that can provide the requested data type(s). All other Sources are grayed out. (Note, if more
than one data type were available, for example image and text, and the application wanted to
accept both types of data, it would do a bit-wise OR of the types’ constants and place the
results into the Suppor t edG oups field.)

pDest
Set to NULL.

pData

Points to a structure of type TW | DENTI TY. The application must allocate this structure prior
to making the call to DSM Ent ry. Once the structure is allocated, the application must:

¢ Set the | d field to zero.

* Set the Pr oduct Nane field to the null string (“\ 0”). (If the application wants a specific
Source to be highlighted in the Select Source dialog box, other than the system default, it
can enter the ProductName of that Source into the ProductName field instead of null.
The system default Source and other available Sources can be determined by using the
DG_CONTRCL / DAT_I DENTI TY / MSG_GETDEFAULT, MSG_GETFI RST and
MBG_GETNEXT operations.)

Additional fields of the structure will be filled in by the Source Manager during this operation
to identify the selected Source. Make sure the application keeps a copy of this updated
structure after completing this call. You will use it to identify the Source from now on.

The most common approach for selecting the Source is to use the Source Manager’s Select
Source dialog box. This is typically displayed when the user clicks on your Select Source
option. To do this:

TWAIN 2.4 Specification

1. The application sends a DG_CONTROL / DAT_| DENTI TY / MSG_USERSELECT operation
to the Source Manager to have it display its dialog box. The dialog displays a list of all
Sources that are installed on the system that can provide data of the type specified by the
application. It highlights the Source that is the system default unless the application requests
otherwise.

2. The user selects a Source or presses the Cancel button. If no devices are available, the
Select Source Dialog’s Select/OK button will be grayed out and the user will have no choice
but to select Cancel.

3. The application must check the Return Code of DSM _Ent r y to determine the user’s
action.

a: If TWRC_SUCCESS: Their selected Source is listed in the TW | DENTI TY structure
pointed to by the pDat a parameter and is now the default Source.

b: If TWRC_CANCEL: The user either clicked Cancel intentionally or had no other choice
because no devices were listed. Do not attempt to open a Source.

¢ If TWRC_FAI LURE: Use the DG_CONTROL / DAT_STATUS / MSG_GET operation (sent
to the Source Manager) to determine the cause. The most likely cause is a lack of
sufficient memory.

As an alternative to using the Source Manager’s Select Source dialog, the application can
devise its own method for selecting a Source. For example, it could create and display its own
user interface or simply select a Source without offering the user a choice. This alternative is
discussed in Chapter 4, "Advanced Application Implementation".

State 3to 4 - Open the Source

The Source Manager is open and able to help your application open a Source.

One Operation is Used:

DG_

TWAIN 2.4 Specification

CONTROL / DAT_| DENTI TY / MSG_OPENDS

pOrigin
Points to the application’s TW | DENTI TY structure.

pDest
Set to NULL.

pData
Points to a structure of type TW | DENTI TY.

Typically, this points to the application’s copy of the Source’s TW | DENTI TY structure filled
in during the MSG_USERSELECT operation previously.

However, if the application wishes to have the Source Manager simply open the default
Source, it can do this by setting the TW | DENTI TY.ProductName field to “\ 0” (null string)
and the TW | DENTI TY.Id field to zero.

During the M5G_OPENDS operation, the Source Manager assigns a unique identifier to the
Source and records it in the TW | DENTI TY.Id field. Copy the resulting TW | DENTI TY
structure. Once the Source is opened, the application will point to this resulting structure via
the pDest parameter on every call that the application makes to DSM_Ent r y where the
desired destination is this Source.

3-15

Chapter 3

3-16

Note: The user is not required to take advantage of the Select Source option. They may click on
the Acquire option without having selected a Source. In that case, your application
should open the default Source. The default source is either the last one used by the
user or the last one installed.

State 4 - Negotiate Capabilities with the Source

At this point, the application has a structure identifying the open Source. Operations can now be
directed from the application to that Source. To receive a single image from the Source, only one
capability, CAP_XFERCOUNT, must be negotiated now. All other capability negotiation is
optional.

Note: When the application detects DF_DSM in its TW | DENTI TY. Suppor t edG oups, then
the Application must use the DSM_MemAl | ocat e, DSM_Menfr ee, DSM MemLock and
DSM_Mennl ock functions it got from DG_CONTROL / DAT_ENTRYPO NT / MSG_GET to
manage any memory it uses with the Source.

Two Operations are Used:

DG_CONTROL / DAT_CAPABI LI TY / MSG_GET
DG_CONTROL / DAT_CAPABI LI TY / MSG_SET

The parameters for each of the operations, in addition to the triplet, are these:

pOrigin
Points to the application’s TW_ | DENTI TY structure.

pDest

Points to the desired Source’s TW | DENTI TY structure. The Source Manager will receive the
DSM _Ent r y call, recognize that the destination is a Source rather than itself, and pass the
operation along to the Source via the DS_Ent r y function.

pDat a
Points to a structure of type TW CAPABI LI TY.
The definition of TW CAPABI LI TY is:

typedef struct {
TW U NT16 Cap; [* 1D of capability to get or set */
TWU NT16 ConType; [/* TWON_ONEVALUE, TWON_ RANGE, */
/* TWON_ENUMERATI ON or TWON_ARRAY */
TW HANDLE hContai ner; /* Handle to contai ner of type */
/* ConType */
} TW.CAPABILITY, FAR *pTW CAPABI LI TY;

The Source allocates the container structure pointed to by the hCont ai ner field when called by
the MSG_CET operation. The application allocates it when calling with the M5G_SET operation.
Regardless of who allocated it, the application deallocates the structure either when the operation
is complete or when the application no longer needs to maintain the information.

Each operation serves a special purpose:

TWAIN 2.4 Specification

MSG_GET

Since Sources are not required to support all capabilities, this operation can be used to determine
if a particular TWAIN-defined capability is supported by a Source. The application needs to set
the Cap field of the TW CAPABI LI TY structure to the identifier representing the capability of
interest. The constants identifying each capability are listed in the TWAI N. Hfile.

If the capability is supported and the operation is successful, it returns the Current, Default, and
Available values. These values reflect previous M5SG_SET operations on the capability which may
have altered them from the TWAIN default values for the capability.

This operation may fail due to several causes. If the capability is not supported by the Source, the
Return Code will be TWRC_FAI LURE and the condition code will be one of the following:

TWCC_CAPUNSUPPORTED Capability not supported by Source
TWCC_CAPBADCPERATI ON Operation not supported by capability
TWCC_CAPSEQERROR Capability has dependency on other capability

Applications should be prepared to receive the condition code TWCC_BADCAP from Sources
written prior to TWAIN 1.7, which maps to any of the three situations mentioned above.

MSG_SET

Changes the Current Value(s) of the specified capability to those requested by the application.

If the Return Code indicates TWRC_FAI LURE, check the Condition Code. A code of
TWCC_BADVALUE can mean:

* The application sent an invalid value for this Source’s range.

* The Source does not allow the setting of this capability.

* The Source doesn’t allow the type of container used by the application to set this capability.

Capability negotiation gives the application developer power to guide the Source and control the
images they receive from the Source. The negotiation typically occurs during State 4. The
following material illustrates only one very basic capability and container structure. Refer to
Chapter 4, "Advanced Application Implementation" for a more extensive discussion of capabilities
including information on how to delay the negotiation of some capabilities beyond State 4.

Note: It is important here to once again remind application writers to always check the return

code from any negotiated capabilities transactions.

MSG_SETCONSTRAINT

Changes the Current Value(s) of the specified capability to those requested by the application, and
constrains the allowable contents of an array, enumeration or range container.

If the Return Code indicates TWRC _FAI LURE, check the Condition Code. A code of
TWCC_BADVALUE can mean:

* The application sent an invalid value for this Source’s container.

* The Source doesn’t allow the type of container used by the application to set this capability.

TWAIN 2.4 Specification 3-17

Chapter 3

3-18

Capability negotiation gives the application developer power to guide the Source and control the
images they receive from the Source. The negotiation typically occurs during State 4. The
following material illustrates only one very basic capability and container structure. Refer to
Chapter 4, "Advanced Application Implementation" for a more extensive discussion of capabilities
including information on how to delay the negotiation of some capabilities beyond State 4.

Note: It is important here to once again remind application writers to always check the return
code from any negotiated capability transactions.

Set the Capability to Specify the Number of Images the Application can Transfer

The capability that specifies how many images an application can receive during a TWAIN
session is CAP_XFERCOUNT. All Sources must support this capability. Possible values for
CAP_XFERCOUNT are:

Value: Description:
1 Application wants to receive a single image.
greater than 1 Application wants to receive this specific number of images.

-1 Application can accept any arbitrary number of images during the
session. This is the default for this capability.

0 This value has no legitimate meaning and the application should not
set the capability to this value. If a Source receives this value during
a MBG_SET operation, it should maintain the Current Value without
change and return TWRC_FAI LURE and TWCC_BADVAL UE.

The default value allows multiple images to be transferred. The code example online illustrates
the setting of a capability and specifically shows how to limit the number of images to one.

See set _Capabi | i t yOneVal ue function for live code example in TwainApp.cpp at
http:/ /twain-samples.svn.sourceforge.net

Other Capabilities

Image Type

The application should be aware of the Source’s | CAP_PI XELTYPE and | CAP_BI TDEPTH. If
your application cannot accept all of the Source’s Available Values, capability negotiation
should be done. (Refer to Chapter 4, "Advanced Application Implementation".)

Transfer Mode

The default transfer mode is Native. That means the Source will access the largest block of
memory available and use it to transfer the entire image to the application at once. If the
available memory is not large enough for the transfer, then the Source should fail the transfer.
The application does not need to do anything to select this transfer mode. If the application
wishes to specify a different transfer mode, Disk File or Buffered Memory, further capability
negotiation is required. (Refer to Chapter 4, "Advanced Application Implementation".)

TWAIN 2.4 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/TwainApp.cpp?view=markup

State 4 to 5 - Request the Acquisition of Data from the Source

The Source device is open and capabilities have been negotiated. The application now enables the
Source so it can show its user interface, if requested, and prepare to acquire data.

One Operation is Used:

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
pOrigin
Points to the application’s TW_| DENTI TY structure.

pDest
Points to the Source’s TW | DENTI TY structure.

pDat a
Points to a structure of type TW USERI NTERFACE.
The definition of TW USERI NTERFACE is:

typedef struct {
TW BOOL ShowUl ;
TW BOOL Modal Ul ;
TW HANDLE hParent;
} TW.USERI NTERFACE, FAR *pTW USERI NTERFACE;

Set the Showll field to TRUE if you want the Source to display its user interface. Otherwise,
set to FALSE.

The Application will set the Mbdal Ul field to TRUE if it wants the Source to run modal, and
FALSE if it wants the Source to run modeless. Please note that to successfully run modal, it
may be necessary for the application to disable inputs to its windows while the Source’s GUI
is running.

* On Windows - It is not recommended to set this field to TRUE. The Source may ignore
this value and use FALSE if it is version 2.1 or lower. If both Source and the Application
are 2.2 or higher, then the Source must return TWRC_CHECKSTATUS if it does not
support requested value.

¢ On Macintosh - It is recommended to use this field.
¢ On Linux - This field is not used.

The application sets the hPar ent field differently depending on the platform on which the
application runs.

* On Windows - The application should place a handle to the Window that is acting as
the Source’s parent.

* On Macintosh - The application sets this field to NULL.
* On Linux - The application sets this field to NULL.

In response to the user choosing the application’s Acquire menu option, the application sends this
operation to the Source to enable it. The application typically requests that the Source display the
Source’s user interface to assist the user in acquiring data. If the Source is told to display its user
interface, it will display it when it receives the operation triplet. Modal and Modeless interfaces
are discussed in Chapter 4, "Advanced Application Implementation" and Chapter 5, "Source
Implementation". Sources must check the ShowUl field and return an error if they cannot
support the specified mode. In other words it is unacceptable for a source to ignore a Showll =
FALSE request and still activate its user interface. The application may develop its own user

TWAIN 2.4 Specification 3-19

Chapter 3

3-20

interface instead of using the Source’s. This is discussed in Advanced Application
Implementation.

Note: Once the Source is enabled via the DG_CONTRCL / DAT_USERI NTERFACE/
MBG_ENABLEDS operation, all events that enter the application’s main event loop must be
immediately forwarded to the Source. The explanation for this is given in Chapter 12,

"Operating System Dependencies" when modifying the event loop in preparation for a
TWAIN session.

State 5to 6 - Recognize that the Data Transfer is Ready

The Source is now working with the user to arrange the transfer of the desired data. Unlike all the
earlier transitions, the Source, not the application, controls the transition from St at e 5 to
State 6.

No Operations (from the application) are Used:

This transition is not triggered by the application sending an operation. The Source causes the
transition.

* On Windows - while the application has the Source enabled, the application is forwarding all
events in its event loop to the Source by using the DG_CONTRCL / DAT_EVENT /
MBG_PROCESSEVENT operation.

Refer to Chapter 12, "Operating System Dependencies" for this.

The application will receive one of these M5SG_XFERREADY, M5G_CL OSEDSREQ or
MSG_CLOSEDSCK messages in its callback function. When the Application receives
MSG_XFERREADY it will transit from St ate 5to State 6.

For legacy methods, please refer to version 1.9 of the Specification.

State 6 to 7 - Start and Perform the Transfer

The Source indicated it is ready to transfer data. It is waiting for the application to inquire about
the image details, initiate the actual transfer, and, hence, transition the session from State 6 to 7.

Two Operations are Used:

The application may want to inquire about the image data that it will be receiving. The DG_| MAGE
/ DAT_I MACEI NFO / MSG_GET operation allows this. Other operations, such as DG_| MAGE /
DAT_| MAGELAYQUT / MSG_GET, provide additional information. This information can be used
to determine if the application actually wants to initiate the transfer.

DG | MAGE / DAT_| MAGEI NFO / MsG_GET
pOrigin
Points to the application’s TW_ | DENTI TY structure.

pDest
Points to the Source’s TW | DENTI TY structure.

TWAIN 2.4 Specification

pDat a

Points to a structure of type TW | MAGEI NFO. The definition of TW | MAGEI NFOis:
typedef struct {

TW FI X32 XResol uti on;

TW FI X32 YResol uti on;

TW I NT32 | mageW dt h;

TW. I NT32 | magelLengt h;

TW.I NT16 Sanpl esPer Pi xel ;

TW.I NT16 Bi t sPer Sanpl e[8] ;

TW I NT16 Bi t sPer Pi xel ;

TW BOOL Pl anar ;

TW.I NT16 Pi xel Type;

TW U NT32 Conpression;
} TW.I MAGEI NFO, FAR *pTW.I MAGEI NFO,

The Source will fill in information about the image that is to be transferred. The application uses
this operation to get the information regardless of which transfer mode (Native, Disk File, or
Buffered Memory) will be used to transfer the data.

The application may want to inquire about the image data that it will be receiving. The DG_| MAGE
/ DAT_I MAGElI NFO / MBSG_GET operation allows this. Other operations, such as DG_| MACGE /
DAT_I MAGELAYQUT / MBSG_CET, provide additional information. This information can be used
to determine if the application actually wants to initiate the transfer.

To transfer the data in the Native mode, the application invokes the DG_| MAGE /

DAT_| MAGENATI VEXFER / MSG_CET operation. The Native mode is the default transfer mode
and will be used unless a different mode was negotiated via capabilities in State 4. For the Native
mode transfer, the application only invokes this operation once per image. The Source returns the
TWRC_XFERDONE value when the transfer is complete. This type of transfer cannot be aborted by
the application once initiated. (Whether it can be aborted from the Source’s User Interface
depends on the Source.) Use of the other transfer modes, Disk File and Buffered Memory, are
discussed in Chapter 4, "Advanced Application Implementation".

If the initiation (DG_| MAGE / DAT_| MAGENATI VEXFER / MSG_GET) fails, the session does not
transition to State 7 but remains in State 6.

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET
pOrigin
Points to the application’s TW_| DENTI TY structure.

pDest
Points to the Source’s TW | DENTI TY structure.

pData

Points to an OS specific native Image format returned by the Data Source. For more
information see Chapter 12, "Operating System Dependencies".

* On Windows: The Source will set pDat a to point to a device-independent bitmap (DIB)
that it allocates.

* On Macintosh: The Source will set pDat a to point to a TIFF that it allocates if both the
application and the data source are TWAIN 2.4 and later: The Source will set pDat a to
point to a Pi cHandl e that it allocates if either the application or the data source is
TWAIN 2.3 and earlier.

TWAIN 2.4 Specification 3-21

Chapter 3

3-22

* On Linux: The Source will set pDat a to point to a TIFF that it allocates.

The application is responsible for de-allocating the memory block holding the Native-format
image.

The function i ni ti at eTr ansf er _Nat i ve illustrates how to get information about the image
that will be transferred, and how to actually perform a native transfer.

Refer to TwainApp.cpp at http:/ /twain-samples.svn.sourceforge.net.

State 7 to 6 to 5 - Conclude the Transfer

While the transfer occurs, the session is in State 7. When the Source indicates via the Return Code
that the transfer is done (TWRC_XFERDONE) or canceled (TWRC_CANCEL), the application needs to
transition the session backwards.

One Operation is Used:

DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER

pOrigin
Points to the application’s TW | DENTI TY structure.

pDest
Points to the Source’s TW | DENTI TY structure.

pData
Points to a structure of type TW PENDI NGXFERS.

The DG_CONTROL / DAT_PENDI NGXFERS / MS5G_ENDXFER operation is sent by the application to
the Source at the end of every transfer, successful or canceled, to indicate the application has
received all the data it expected.

After this operation returns, the application should examine the pDat a->Count field to
determine if there are more images waiting to be transferred. The value of pDat a->Count
indicates the following:

Value Description

pDat a->Count = O If zero, the Source will “automatically” transition back to State 5
without the application needing to take any additional action.
Application writers please make special note of this instance of an
implied source transition.

The application should return to its main event loop and await
notification from the Source (either MSG_XFERREADY or
MSG_CLOSEDSREQ).

TWAIN 2.4 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/TwainApp.cpp?view=markup

Value

Description

pDat a->Count = -

1
or

pDat a->Count > 0

The Source has more transfers available and is waiting in State 6.

If the value is -1, that means the Source has another image available but
it is unsure of how many more will be available. This might occur if

the Source was controlling a device equipped with a document feeder
and some unknown number of documents were stacked in that feeder.

If the number of images is known, the Count will be a value greater
than 0.

Either way, the Source will remain in State 6 ready for the application
to initiate another transfer. The Source will NOT send another
MSG_XFERREADY to trigger this. The application should proceed as if
it just received a MSG_XFERREADY.

If more images were pending and your application does not wish to transfer all of them, you can
discard one or all pending images by doing the following:

To discard just the next pending image, use the DG_CONTROL / DAT_PENDI NGXFERS /
MSG_ENDXFER operation. Then, check the Count field again to determine if there are
additional images pending.

To discard all pending images, use the DG_CONTRCL / DAT_PENDI NGXFERS / MSG_RESET
operation. Following successful execution of this operation, the session will be in State 5.

The function DoAbor t Xf er illustrates how to stop a transfer in TwainApp.cpp on
http:/ / twain-samples.svn.sourceforge.net.

State 5to 1 - Disconnect the TWAIN Session

Once the application has acquired all desired data from the Source, the application can disconnect
the TWAIN session. To do this, the application transitions the session backwards.

In the last section, the Source transitioned to State 5 when there were no more images to transfer
(TW_PENDI NGXFERS. Count = 0) or the application called the DG_CONTROL /
DAT_PENDI NGXFERS / MSG_RESET operation to purge all remaining transfers. To back out the

remainder of the session:

Three Operations (plus some platform-dependent code) are Used:

To move from State 5 to State 4

DG_CONTROL / DAT_USERI NTERFACE / M5G_DI SABLEDS

TWAIN 2.4 Specification

pOrigin

Points to the application’s TW | DENTI TY structure.

pDest

Points to the Source’s TW | DENTI TY structure.

pData

Points to a structure of type TW USERI NTERFACE.
The definition of TW USERI NTERFACE is:

typedef struct {

3-23

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/TwainApp.cpp?view=markup

Chapter 3

3-24

TW BOOL ShowUl ;
TW BOOL Modal Ul ;
TW HANDLE hParent;
} TW USERI NTERFACE, FAR *pTW USERI NTERFACE;

Its contents are not used.

Note the following:

e If the Source’s User Interface was displayed: This operation causes the Source’s user
interface, if displayed during the transition from State 4 to 5, to be lowered. This operation is
sent by the application in response to a MSG_CLOSEDSREQfrom the Source. This request from
the Source appears in the TWMessage field of the TW EVENT structure. It is sent back from
the DG_CONTRCL / DAT_EVENT / MSG_PROCESSEVENT operation used by the application to
send events to the application.

e If the application did not have the Source’s User Interface displayed: The application
invokes this command when all transfers have been completed. In addition, the application
could invoke this operation to transition back to State 4 if it wanted to modify one or more of
the capability settings before acquiring more data.

To move from State 4 to State 3
DG _CONTROL / DAT | DENTI TY / MSG_CLOSEDS

pOrigin
Points to the application’s TW_| DENTI TY structure.
pDest

Should reference a NULL value (indicates destination is Source Manager)

pData
Points to a structure of type TW | DENTI TY
This is the same TW | DENTI TY structure that you have used throughout the session to direct
operation triplets to this Source.

When this operation is completed, the Source is closed. (In a more complicated scenario, if the
application had more than one Source open, it must close them all before closing the Source
Manager. Once all Sources are closed and the application does not plan to initiate any other
TWAIN session with another Source, the Source Manager should be closed by the application.)

To move from State 3 to State 2
DG_CONTROL / DAT_PARENT / M5G_CLOSEDSM

pOrigin

Points to the application’s TW | DENTI TY structure.

pDest

Should reference a NULL value (indicates destination is Source Manager)
pData

Typically, you would expect to see this point to a structure of type TW PARENT but this is not
the case. This is an exception to the usual situation where the DAT field of the triplet identifies
the data structure for pDat a. pDat a is the same value used for M5SG_OPENDSM

TWAIN 2.4 Specification

On Windows: pDat a points to the window handle (hWhd) that acted as the Source’s
“parent”.

On Macintosh: pDat a should be a NULL value.
On Linux: pDat a should be a NULL value.

To move from State 2 to State 1

Once the Source Manager has been closed, the application must unload it from memory before
continuing.

See Chapter 12, "Operating System Dependencies" for more information.

TWAIN Session Review

Applications have flexibility regarding which state they leave their TWAIN sessions in between
TWAIN commands (such as Select Source and Acquire).

For example:

* An application might load the Source Manager on start-up and unload it on exit. Or, it might
load the Source Manager only when it is needed (as indicated by Select Source and Acquire).

* An application might open a Source and leave it in State 4 between acquires.

The following is the simplest view of application’s TWAIN flow. All TWAIN actions are initiated
by a TWAIN command, either user-initiated (Select Source and Acquire) or notification from the
Source (MSG_XFERREADY and M5G_CLOSEDSREQ).

Application State Application Action
Receives
Select Source... 1->2 Load Source Manager

2->3 DG _CONTROL / DAT_PARENT / MSG_OPENDSM
DG_CONTROL / DAT_I DENTI TY / MBG_USERSELECT
3->2 DG CONTROL / DAT_PARENT / MSG_CLOSEDSM

2->1 Unload Source Manager

Acquire... 1->2 Load Source Manager
2->3 DG_CONTROL / DAT_PARENT / M5G_OPENDSM
3->4 DG _CONTROL / DAT_| DENTI TY / MSG_OPENDS
Capability Negotiation

4->5 DG_CONTROL / DAT_USERI NTERFACE /
M5G_ENABLEDS

TWAIN 2.4 Specification 3-25

Chapter 3

Application State Application Action
Receives
MSG_XFERREADY 6 For each pending transfer:

DG_| MAGE / DAT_I MAGEI NFO/ MSG_GET
DG_| MAGE / DAT_I| MAGELAYQUT / MSG_GET
DG_CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT
6->7 DG _| MAGE / DAT_| MAGEXxxXXFER / MSG_CET
7->6 DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER
6->5 Automatic transition to State 5 if
TW PENDI NGXFERS. Count equals 0.
M5G CLOSEDSREQ 5->4 DG _CONTRCL / DAT_USERI NTERFACE /
4.>3 MBG_DI SABLEDS
3.>o DG _CONTROL / DAT_I DENTI TY / M5G_CLOSEDS
7.1 DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM
Unload the Source Manager

Error Handling

Your application must be robust enough to recognize and handle error conditions that may occur
during a TWAIN session. Every TWAIN operation triplet has a defined set of Return Codes and
Conditions Codes that it may generate. These codes are listed on the reference pages for each
triplet located in Chapter 7, "Operation Triplets". Be sure to check the Return Code following
every call to the DSM _Ent r y function. If it is TWRC_FAI LURE, make sure your code checks the
Condition Code and handles the error condition appropriately.

The following code segment illustrates the basic operations for doing this:

TW STATUS t wSt at us;
if (rc == TWRC_FAI LURE)
/I check Condition Code
rc = (*pDSM_Entry) (&Appl D,
&Sour cel D,
DG_CONTRQOL,
DAT_STATUS,
M5G_CET,
(TW_MEMREF) &t wSt at us) ;
switch (twsStatus. ConditionCode)
/I handl e each possi bl e Condition Code for the operation

Common Types of Error Conditions

Sequence Errors

The TWAIN protocol allows the invoking of specific operations only while the TWAIN session is
in a particular state or states. The valid states for each operation are listed on the operation’s

3-26 TWAIN 2.4 Specification

reference pages inChapter 7, "Operation Triplets". If an operation is called from an inappropriate
state, the call will return an error, TWRC_FAI LURE, and set the Condition Code to
TWCC_SEQERROR. Although this error should not occur if both the application and Source are
behaving correctly, it is possible for the session to get out of sync.

If this error occurs, correct it by assuming the Source believes it is in State 7. The application
should invoke the correct operations to back up from State 7 to State 6 and so on down the states
until an operation succeeds. Then, the application can continue or terminate the session.

The following pseudo code illustrates this:

if (TWCC_SEQERROR)
/1 Assune State 7, start backing out from State 7 until
/1 the Condition Code != TWCC SEQERROR
State 7 to 6 DG CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER
State 6 to 5 DG CONTROL / DAT_PENDI NGXFERS / MSG RESET
State 5 to 4 DG CONTROL / DAT_USERI NTERFACE / MSG DI SABLEDS
State 4 to 3 DG CONTROL / DAT_I DENTITY / MSG_CLOSEDS

Low Memory Errors

Another common type of error condition occurs when insufficient memory is available to perform
a requested operation. The most likely times for this to occur are:

* When a Source is being opened
* When a Source is being enabled

* During a Native image transfer

Your application must check the Return Code and Condition Code (TWRC_FAI LURE /
TWCC_LOAVEMORY) to recognize this. Your application may be able to free up sufficient memory
to continue or it must quit.

State Transition Operation Triplet Errors

Many operations normally cause state transitions. If one of these operations fails, for example,
returns TWRC_FAIl LURE, do not make the state transition. The application must check the Return
Code following every operation and update the current state only if the operation succeeds.

An implied state transition during DG_CONTROL/ DAT_PENDI NGXFERS/ M5G_ENDXFER
deserves special note here. If the Count field of the TW PENDI NGXFERS structure is zero then the
source will automatically transition back to State 5. Application writers should be aware of this
condition and react accordingly.

Error Handling and State Transitions

It is possible that during execution of any triplet that the data source will fail unexpectedly. Itis
very important that applications pay attention to the TWAIN State of the data source at the time of
failure. A hanging or deadlock condition will occur if the application fails to recover from error
conditions with the proper state transitions. Most error handling is fairly obvious, however the
following items have been mishandled in the past.

TWAIN 2.4 Specification 3-27

Chapter 3

Failing Transition to State 5

A data source may fail a call to DG_CONTRCL / DAT_USERI NTERFACE / MSG_ENABLEDS
unexpectedly. It is important to note that if an application requests the User Interface be
suppressed, and the data source returns a code of TWRC_CHECKSTATUS, this means only that User
Interface suppression was not possible. The transition to State 5 still occurred. If the application
does not like this condition, then it may call M5SG_DI SABLEDS to close the data source without
further user interaction. A return code of TWRC_FAl LURE indicates that the transition to State 5
has not occurred.

Failure During State 6 or 7

It is important to be aware that when an error occurs during image transfer, a state transition to
State 5 is not implicit. A call to DG_CONTROL / DAT_PENDI NGXFERS / MSG_RESET or
MBG_ENDXFERis required for a state transition back to State 5. If an applications calls

MBG_DI SABLEDS immediately after such a failure without first making the required calls to
DAT_PENDI NGXFERS, the resulting behavior of the data source will not be predictable. The data
source should fail any call to MSG_DI SABLEDS outside of State 5.

Best Practices for TWAIN Compliant Applications

The following items are covered in this section:

* Handling Status Returns

* States 1, 2, 3: Finding and Opening a Data Source
* States 4, 5: Capability Negotiation

* States 6, 7: Transferring Data

* Stepping Back Down the States

Handling Status Returns

TWAIN supports a small number of status return codes and condition codes. If an operation
returns TWRC_FAI LURE, then the application must immediately issue the DG_CONTROL /
DAT_STATUS / MSG_GET operation to collect the condition code.

The following tables describe the meaning for each return code and condition code, and explains
the action that an application should take in response.

Return Code Meaning / Action

TWRC_CANCEL Intended for use with the DAT_| MAGE* XFER operations. Operation

has been canceled.

Call DG_CONTRCL / DAT_PENDI NGXFERS / MSG_ENDXFERas
one normally does after a successful transfer.

3-28

TWAIN 2.4 Specification

Return Code Meaning / Action

TWRC_CHECKSTATUS Intended for use with DAT_CAPABI LI TY and DAT_| MAGELAYQUT.

Operation failed to completely perform the desired operation. For

example, setting | CAP_BRI GHTNESS to 3 when its range is -1000 to
1000 with a step of 200. The data source may opt to set the value to
0 and return this status.

The application should confirm its last setting, if it depends on
getting the exact value it requested.

TWRC_DATANOTAVAI LABLE Intended for use with DAT_EXTI MAGElI NFO. There is no data
available for the requested TVEI _ item.

Scanning may continue. The decision to continue with scanning is
at the discretion of the application, depending on which field
reported this status.

TWRC _DSEVENT Intended for use with DAT_EVENT. The data source processed the
event.

The application must not take any further action on this message.

TWRC_ENDCFLI ST Intended for use with DAT_| DENTI TY and DAT_FI LESYSTEM

There are no more items to enumerate in this list. If a call is needed
to close the list, it must be called next.

TWRC_FAI LURE May be returned by any operation. An error has occurred.

The application must call DAT_STATUS, and refer to the condition
code for more information.

TWRC _| NFONOTSUPPORTED Intended for use with DAT_EXTI MAGElI NFO. The requested TVEI _
data is either not supported by this data source, or is not supported
for this particular image.

Scanning may continue. The decision to continue with scanning is
at the discretion of the application, depending on which field
reported this status.

TWRC_NOTDSEVENT Intended for use with DAT_EVENT. The data source did not process
the event.

The application passes the message to its own dialogs.

TWRC_SUCCESS Operation was successful.

The application continues as normal.

TWRC _XFERDONE Intended for use with the DAT_| MAGE* XFER operations. The
image has been fully transferred.

The application must be in state 7. It should call DAT_I MAGEI NFO
or DAT_EXTI MAGEI NFO if it needs to collect metadata for this
image.

TWAIN 2.4 Specification 3-29

Chapter 3

Condition Code

Meaning / Action

TWCC_BADCAP

Intended for use with DAT_CAPABI LI TY. Returned by pre-1.7 data
sources to indicate that the capability is not supported, that the
value was bad, or that the desired value could not be set at this time.

The application should use the MSG_GET call for the operation to
find out the constraints on the current values, if any, and to confirm
the current value.

TWCC_BADDEST

May be returned by any operation (save for the DAT_PARENT
operations). The TW_ | DENTI TY for the destination (the data
source) does not match any items opened by M5G_OPENDS.

The application may have a corrupt TW | DENTI TY, or it may have
already closed the data source associated with the values in the
TW. I DENTI TY structure. It should return to state 3 if it wants to
attempt to reopen the data source.

TWCC_BADPROTOCOL

May be returned by any operation. The requested DG * / DAT_*
I MBG_* is not supported by the data source.

The application cannot perform this operation; any further action is
at its discretion.

TWCC_BADVALUE

May be returned by any operation. The capability or operation has
rejected the requested setting. Unless otherwise indicated in the
Specification the original setting remains unchanged.

The application should use the MSG_GET call for the operation to
find out the constraints on the current values, if any, and to confirm
the current value.

TWCC_BUMMVER

May be returned by any operation. The data source is in a critical
state.

The application must save any important information and exit as
soon as possible.

TWCC_CAPBADOPERATI ON

Intended for use with DAT_CAPABI LI TY. The capability does not
support the requested operation.

The application must use DG_CONTROL / DAT_CAPABI LI TY /
MSG_QUERYSUPPCRT to determine what operations a capability
supports.

TWCC_CAPSEQERROR

Intended for use with DAT_CAPABI LI TY. The capability being
MSG_SET or MSG_RESET cannot be modified due to a setting for a
related capability. For instance, this may be returned by

| CAP_CI TTKFACTORIf | CAP_COVPRESSI ONis set to any value
other than TWCP_GROUP32D.

The application must set values in the correct order.

3-30

TWAIN 2.4 Specification

Condition Code

Meaning / Action

TWCC_CAPUNSUPPORTED

Intended for use with DAT_CAPABI LI TY. The capability is not
supported.

The application cannot negotiate this capability.

TWCC_CHECKDEVI CEONLI NE

May be returned for any operation in state 4 or higher, except ones
that reduce state (DAT_PENDI NGXFERS / M5G_ENDXER,
DAT_PENDI NGXFERS / MsG_RESET, DAT_USERI NTERFACE /
MSG_DI SABLEDS, DAT_I DENTI TY / MsG_CLCSEDS,
DAT_PARENT / MsG_CLOSEDSM).

When received the application uses CAP_DEVI CEONLI NE to
determine when the device is available.

TWCC_DAMAGEDCORNER

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MsG_ENDXFERas
one normally does after a successful transfer.

TWCC_DENI ED

Intended for DAT_| MAGEFI LEXFER and DAT_FI LESYSTEM the
specified file or directory cannot be modified or deleted.

If for DAT_| MAGEFI LEXFER, then select a different filename and
try again. If for DAT_FI LESYSTEM then alert the user.

TWCC_DOCTOCDARK

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFERas
one normally does after a successful transfer.

TWCC_DOCTOOLI GHT

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MsG_ENDXFERas
one normally does after a successful transfer.

TWCC_FI LEEXI STS

Intended for DAT_FI LESYSTEM The specified file or directory
already exists.

Pick a different file name and try again.

TWCC_FI LENOTFOUND

Intended for DAT_| MAGEFI LEXFERand DAT_FI LESYSTEM The
specified file or directory cannot be found.

If received during scanning the application may select a new
directory path and try again, otherwise alert the user.

TWCC_FI LEWRI TEERROR

Intended for DAT_| MAGEFI LEXFER and DAT_FI LESYSTEM the
specified file or directory could not be written, usually indicating a
disk full condition, though it may also indicate a file or directory
that the user has no permission to write.

If received during scanning the application may free resources and
try again, otherwise alert the user.

TWAIN 2.4 Specification

3-31

Chapter 3

3-32

Condition Code

Meaning / Action

TWCC_FOCUSERRCOR

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFERas
one normally does after a successful transfer.

TWCC_| NTERLOCK

Intended for use with the DAT_| MAGE* XFER operations.

The application takes action to return to state 5 (the GUI is up) or
state 4 (no GUI).

TWCC_LOWWEMORY

May be returned for any operation except ones that reduce state
(DAT_PENDI NGXFERS / MSG_ENDXER, DAT_PENDI NGXFERS /
MSG_RESET, DAT_USERI NTERFACE / MSG_DI SABLEDS,
DAT_I DENTI TY / MSG_CLOSEDS, DAT_PARENT /
MSG_CLCOSEDSM.

When received the application may free resources and try again.

TWCC_MAXCONNECTI ONS

Intended for use with DAT_| DENTI TY / MSG_OPENDS. The data
source cannot support any more connections to this device.

Try again later.

TWCC_NODS

Intended for use with DAT_| DENTI TY / MSG_OPENDS. The
device is not online.

Try again later.

TWCC_NOVEDI A

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFERas
one normally does after a successful transfer.

TWCC_NOTEMPTY

Intended for use with DAT_FI LESYSTEM Directory is in use, and
cannot be deleted.

Delete the contents of the directory first, then delete the directory.

TWCC_OPERATI ONERROR

The operation failed, but the user has already been informed by the
data source.

If CAP_I NDI CATORS is TRUE or TW USERI NTERFACE. ShowUl
was set to TRUE, then the application should not issue its own
message to the user. If these values are FALSE (meaning that no
user interface is showing) then the application should alert the user
and treat the condition as a TWCC_BADPROTOCOL. If the current
state is 5, 6 or 7 return back to state 4 as soon as possible.

TWCC_PAPERDOUBLEFEED

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MsG_ENDXFERas
one normally does after a successful transfer.

TWCC_PAPERJAM

Intended for use with the DAT_| MAGE* XFER operations.

Call DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFERas
one normally does after a successful transfer.

TWAIN 2.4 Specification

Condition Code Meaning / Action

TWCC_SUCCESS Operation was successful. This value should only be paired with
TWRC_SUCCESS.

If it is paired with another return code, like TWRC_FAI LURE, treat it
as TWCC_BADPROTOCOL. If it happens during state 5, 6 or 7, then
return to state 4 as soon as possible.

States 1, 2, 3: Finding and Opening a Data Source
Registering as a TWAIN 2.x+ Application

The application loads the TWAIN Data Source Manager. When this is done it constructs a
TW_I DENTI TY structure, which includes the following flag in the

TW._| DENTI TY. Support edG oups field: DF_APP2. It then issues the DG_CONTROL /
DAT_PARENT / MsSG_OPENDSMcommand with this TW | DENTI TY structure.

Confirming that the DSM is 2.x

The application examines the TW | DENTI TY. Suppor t edG oups field. If it contains the
DF_DSM flag, then the DSM supports the TWAIN 2.x interface.

Issuing DAT_ENTRYPOINT

If the DF_DSM flag is detected, then the application issues the DG_CONTROL /
DAT_ENTRYPO NT / MSG_CET call to retrieve function pointers for the memory allocation
routines. The application must use these routines for any handles that it sends to the data source.

Selecting a Data Source

If the application wishes to use the default data source, it can issue the DG_CONTROL /
DAT_I DENTI TY / MSG_CGETDEFAULT command. This is preferred to calling DG_CONTROL /
DAT_I DENTI TY / MSG_OPENDS with an empty structure.

If the application wishes to get the list of available data sources it uses DG_CONTROL /

DAT_I DENTI TY / MSG_GETFI RST and DG_CONTROL / DAT_I DENTITY / MSG_GETNEXT,
retaining the TW | DENTI TY of the data source it wants to use. This structure must not be
modified in any way.

Use of DG_CONTROL / DAT_I DENTITY / MSG_USERSELECT is discouraged because it is not
localized for many languages, and because it is not available on systems other than Windows.

States 4, 5: Capability Negotiation
Overview
An application may negotiate settings with a data source in one of these ways:
* through the data source’s built-in user interface

* using snapshots of the data source’s previous settings

* through TWAIN’s programmatic interface

TWAIN 2.4 Specification 3-33

Chapter 3

3-34

In all cases the application is responsible for negotiating capabilities relating to data transfers.
These capabilities come with defaults which must serve as the startup value for any data source
(refer to the chapter on Capabilities to find the default values). These values will not appear on
any data source’s user interface, and they will not be affected by any data source’s
DAT_CUSTOVDSDAT:

CAP_SHEETCOUNT
CAP_XFERCOUNT

| CAP_XFERVECH
| CAP_UNI TS

All other settings may be negotiated using one of the techniques described above.

The Data Source’s User Interface

When calling DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS with

TW USERI NTERFACE. ShowUl set to TRUE, an application may not make assumptions about
what settings the user may change. Any programmatic changes (other than the items mentioned
above) may be overridden by the user interface.

Use of TW USERI NTERFACE. Mbdal Ul set to TRUE is discouraged. An application should take
responsibility for disabling its interface if it wants modal behavior.

Using Snapshots

The application raises the data source’s user interface using DG_CONTROL /
DAT_USERI NTERFACE / MSG_ENABLEDSUI ONLY. If MSG_CLOSEDSREQis received, then no
action is taken (other than calling DG CONTRCL / DAT_USERI NTERFACE / MSG_DI SABLEDS).

If M5G_CLOSEDS(XK is received, then immediately after calling DG_CONTROL /
DAT_USERI NTERFACE / MSG_DI SABLEDS the application calls DG_CONTRCL /
DG_CUSTOVDSDATA / MSG_CET.

The data returned by a data source in the TW CUSTOVDSDATA structure is opaque; an application
must not examine or alter this data in any way.

To restore settings, the application calls DG CONTROL / DG_CUSTOVDSDATA / MSG_SET with
the data from the previous M5SG_GET operation.

This method requires a small amount of coding, but it allows the application to control all aspects
of the data source, including custom features. It can be combined with the programmatic
interface, using DAT_CUSTOVDSDATA to select most settings and the programmatic interface to
make a smaller set of adjustments.

Programmatic Interface

Programmatic is the most advanced method of controlling a data source. It takes place in state 4.
The application uses a functional approach; features are discovered through the TWAIN interface,
not by hardcoded settings or relying on version numbers.

Available functions are determined through the following capabilities and operations (details on
these items are covered later in the Specification):

CAP_SUPPORTEDCAPS

TWAIN 2.4 Specification

CAP_SUPPORTEDDATS

CAP_SUPPORTEDEXTI MAGEI NFO

CAP_CUSTOM NTERFACEGUI D

DG _CONTROL / DAT_CAPABI LI TY / MSG_QUERYSUPPORT

As a matter of good defensive programming an application should make no assumptions about
the available capabilities, not even ones that are mandatory.

Assumptions should not be made about the value of capabilities when a data source is opened.
Use the DG_CONTROL / DAT_CAPABI LI TY / MSG_RESETALL operation or DG_CONTRCL /
DAT_CUSTOVDSDATA / MSG_SET to make sure that negotiation is starting from a known state.

Applications should follow the instructions in the Capability Ordering section to navigate the
dependencies that capabilities have on one another. If a change is made out of order, then all
capabilities dependent on that setting must be renegotiated.

Assumptions should not be made about the container types returned by a data source. For
instance, a DG_CONTROL / DAT_CAPABI LI TY / MSG_CET for | CAP_XRESCLUTI ONmay
return TW ONEVALUE if only one resolution is supported, TW ENUMERATI ONif a small set of
discontinuous resolutions is supported, or TW RANGE.

Each of the containers has a field named . | t em . | t enli st or value fields, which receives the
new setting. These fields are variable, so a cast is needed. For example:

((TW.UI NT16) &t woneval ue->lten) = TWSX_MEMORY;

((TW.UI NT16*) &t war r ay- >l t enli st)[2] = TWFT_RED;

((TW_FRAME*) &t wenumer ati on->ltenli st)[0] = twframeVal ue;

((TW.FI X32) &pt wr ange- >Curr ent Val ue) = twfi x32Val ue;

Strings in TWAIN are zero padded, not zero terminated. An application should not assume that
the string will end with ASCII 0. Use memcpy to move the data to a string, and make sure to
properly terminate it. For Mac OS X the first byte is a prefix indicating the valid number of
characters in the string.

One safe method of setting any current value is to take the following steps:

* call DG_CONTRCL / DAT_CAPABI LI TY / MSG_GETCURRENT on the desired capability
* determine the container type from the TW CAPABI LI TY. ConType field
e for TWON_ONEVALUE, do the following:
- lock the container using the DAT_ENTRYPO NT. DSM_MenlLock function
- determine the item type from the container’s . | t enilype field
- update the . | t emfield with the desired value
- unlock the container using the DAT_ENTRYPO NT. DSM_Menlnl ock function
* for TWON_ARRAY, do the following:
- lock the container using the DAT_ENTRYPO NT. DSM_Menlock function

- determine the item type from the container’s . | t enilype field

TWAIN 2.4 Specification 3-35

Chapter 3

- create a new container (with sufficient room for all the elements) using the
DAT_ENTRYPQO NT. DSM_MemAl | ocat e function

- lock the new container using the DAT_ENTRYPQ NT. DSM_Meniock function
- setthe. |t enType field to the one reported by MSG_GETCURRENT
- setthe. Nunl t ens field to the number of desired elements
- setthe.ltenList field with the desired values
- unlock the new container using the DAT_ENTRYPO NT. DSM_Mennl ock function
- unlock the original container using the DAT_ENTRYPO NT. DSM_MenUnl ock function
- free the original container using the DAT_ENTRYPQO NT. DSM_Menfr ee function
* call MSG_SET with the updated container
* free the container using the DAT_ENTRYPO NT. DSM_Menfr ee function
* respond to the status returned by M5SG_SET

If setting constraints, then do the following;:
e call DG CONTROL / DAT_CAPABILITY / MG QUERYSUPPORT to confirm that the
capability has TWQC_SETCONSTRAI NT
* callDG_ CONTRCL / DAT_CAPABILITY / MSG_CET on the desired capability
* determine the container type from the TW CAPABI LI TY. ConType field
* for TWON_ONEVALUE, do the following;:
- lock the container using the DAT_ENTRYPO NT. DSM_Meniock function
- determine the item type from the container’s . | t enilype field
- update the . | t emfield with the desired value
- unlock the container using the DAT_ENTRYPOI NT. DSM_Mernl ock function
* for TWON_ARRAY, do the following:
- lock the container using the DAT_ENTRYPO NT. DSM_Meniock function
- determine the item type from the container’s . | t eniType field

- create a new container (with sufficient room for all the elements) using the
DAT_ENTRYPO NT. DSM_MenAl | ocat e function

- lock the new container using the DAT_ENTRYPQO NT. DSM _Memniock function
- setthe. | t enilype field to the one reported by MSG_GET
- setthe. Num t ens field to the number of desired elements
- setthe. | tenli st field with the desired values
- unlock the new container using the DAT_ENTRYPO NT. DSM_Meninl ock function
- unlock the original container using the DAT_ENTRYPOI NT. DSM_MerUnl ock function
- free the original container using the DAT_ENTRYPQO NT. DSM_Mentr ee function
e for TWON_ENUVMERATI ON, do the following;:
- lock the container using the DAT_ENTRYPO NT. DSM_Meniock function

3-36 TWAIN 2.4 Specification

- determine the item type from the container’s . | t enilype field

- create a new container (with sufficient room for all the elements) using the
DAT_ENTRYPQO NT. DSM_MenAl | ocat e function

- lock the new container using the DAT_ENTRYPQ NT. DSM_Menlock function
- setthe. |t enType field to the one reported by MSG_GETCURRENT

- setthe. Numl t ens field to the number of desired elements

- setthe.ltenList field with the desired values

- setthe. Current| ndex field with the 0-based index of the . | t enli st value that
represents the current value

- set the. Def aul t | ndex field to O (this value will be ignored by the data source)
- unlock the new container using the DAT_ENTRYPO NT. DSM_Mennl ock function
- unlock the original container using the DAT_ENTRYPO NT. DSM_Mennl ock function
- free the original container using the DAT_ENTRYPQO NT. DSM_Menfr ee function
* call MSG_SETCONSTRAI NT with the updated container
* free the container using the DAT_ENTRYPO NT. DSM_Menfr ee function
* respond to the status returned by MSG_SETCONSTRAI NT

The Graphical User Interface

This section assumes the application sets TW USERI NTERFACE. ShowUl to TRUE.

The application must not negotiate any values using DG CONTROL / DAT_CAPABI LI TY /
MSG_SET or MSG_RESET or MSG_RESETALL while in state 5.

Using MSG_ENABLEDS

The DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS operation raises a data source
GUI that contains a Scan and a Cancel button. The Scan button may result in the receipt of a
DG _CONTROL / DAT_NULL / MSG_XFERREADY message from the data source to the
application, at which point the application must move to state 6 and begin image transfers.

The Cancel button causes the receipt of a DG_CONTRCL / DAT_NULL / MSG_CLOSEDSREQ
message from the data source to the application, at which point the application must issue the
appropriate operations to the data source to take it from its current state (which may be 5, 6 or 7)
to state 4.

Using MSG_ENABLEDSUIONLY

The DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDSUN ONLY operation raises a data
source GUI that contains an OK and a Cancel button. The OK button causes the receipt of a
DG_CONTRCL / DAT_NULL / MSG_CLOSEDSCK message from the data source to the
application, at which point the application must issue DG_CONTROL / DAT_USERI NTERFACE /
MSG_DI SABLEDS to the data source. The application must immediately take action on the OK
request, for instance, calling DG_CONTROL / DAT_CUSTOVDSDATA / M5G_GET.

The Cancel button causes the receipt of a DG_CONTRCL / DAT_NULL / MSG_CLOSEDSREQ
message from the data source to the application, at which point the application must issue

TWAIN 2.4 Specification 3-37

Chapter 3

3-38

DG_CONTRCL / DAT_USERI NTERFACE / MSG_DI SABLEDS to the data source. Any changes
made by the GUI will be discarded, but the application should consider issuing DG_CONTROL /
DAT_CAPABI LTY / MSG_RESETALL or DG_CONTROL / DAT_CUSTOVDSDATA / MSG_SET to
make sure the data source is in a known state.

States 6, 7: Transferring Data

When the DG_CONTROL / DAT_NULL / MSG_XFERREADY message is received by the
application, it moves to state 6 and begins transferring images. There are four transfer methods,
as specified by | CAP_XFERVECH:

TWSX_NATI VE, which uses DAT_| MAGENATI VEXFER
TWSX_MEMORY, which uses DAT_| MAGEMEMXFER
TWEX_FI LE, which uses DAT_| MAGEFI LEXFER
TWSX_MEMFI LE, which uses DAT_| MAGEMEMFI LEXFER

Each method has advantages and disadvantages.

Using DAT_IMAGENATIVEXFER

Native transfers are the default and must be supported by all data sources. Being ‘native’ to the
operating system they vary, with Bitmaps used on Windows and TIFF used on Mac OS X and
Linux. Since they include meta-data describing the image no other call is required to view the
image, and saving the image to disk is easy.

The chief drawback to native transfers is their size. Bitmaps cannot be compressed, and even TIFF
files must be kept entirely in physical memory during the transfer. Some formats, like Bitmap
may require additional image processing, such as changing the packing order for color data, or the
location of the image origin, or realignment of each raster line.

Using DAT_IMAGEMEMXFER

Memory transfers must be supported by all data sources. They allow for efficient use of physical
memory, since they transfer data using stripes or tiles. They support compressed images.

Memory transfers may not include any meta-data about the image, requiring a call to DG_| MAGE
/ DAT_I MAGEI NFO / MsSG_CET or DG_| MAGE / DAT_EXTI MAGEI NFO / MSG_GET.

Using DAT_IMAGEFILEXFER

File transfers are optional for data sources. They are supported if the data source accepts a value
of TWEX_FI LE for | CAP_XFERMECH. They allow for efficient use of physical memory, since they
transfer data using the disk drive. They support compressed images. Since they include meta-
data describing the image no other call is required to view the image.

Being optional means that file transfer may not be an option for a given data source. There is also
no guarantee that the data source supports the image file format needed by the application.

Using DAT_IMAGEMEMFILEXFER

Memory File transfers are optional for data sources. They are supported if the data source accepts
a value of TWSX_MEMFI LE for | CAP_XFERMECH. They allow for efficient use of physical memory,
since they transfer data using stripes or tiles. They support compressed images. Since they
include meta-data describing the image no other call is required to view the image.

TWAIN 2.4 Specification

Being optional means that memory file transfer may not be an option for a given data source.
There is also no guarantee that the data source supports the image file format needed by the
application.

The Image Transfer Loop

When the application receives DG CONTRCL / DAT_NULL / M5SG_XFERREADY it goes to state 6
and transfers the first image.

DAT_| MAGENATI VEXFER and DAT_I MAGEFI LEXFER only require one call to transfer the
complete image. DAT_| MAGEMEMXFER and DAT_ | MAGEMEMFI LEXFER may require multiple calls
returning TWRC_SUCCESS to indicate when there is more data to transfer for the current image.
All of the calls return TWRC_XFERDONE when the image is completely transferred. Any other
status is an error.

When TWRC_XFERDONE is received the application may call DG _| MAGE / DAT_I MAGEI NFO /
MSG_CET or DG _| MAGE / DAT_EXTI MAGEI NFO / MSG_GET to get information about the
image. Calling DAT_I MAGEI NFObefore TWRC_XFERDONE is received may result in an error or
data that does not correspond exactly to the transferred image.

After either a successful transfer or an error the application calls DG_CONTRCOL /
DAT_PENDI NGXFERS / MSG_ENDXFER. It determines if there are more images to transfer by
examining the value of TW PENDI NGXFERS. Count .

If there are more images the state goes to 6. If TW PENDI NGXFERS. Count is equal to zero then
the state skips 6 and goes to 5.

The application has the option to discard an image by calling DG_CONTROL /

DAT_PENDI NGXFERS / MSG_ENDXFER without first transferring the data. It also has the option
to gracefully exit the scanning state with DG_CONTROL / DAT_PENDI NGXFERS /
MSG_STOPFEEDER, or it can immediately abort scanning using DG_CONTROL /

DAT_PENDI NGXFERS / MsG_RESET.

Stepping Back Down the States

The application and the data source both track a current state from 1 to 7 (with the most time
spent in states 4 to 7). If they get out of sync, then the data source returns TWRC_FAI LURE /
TWCC_SEQERRCR for an operation being called in the wrong state.

When this happens the application must take measures to resynchronize itself with the data
source. The easiest way to go about this is to use the following call sequence, stopping at the
desired state.

DG_CONTRCOL / DAT_PENDI NGXFERS / MSG_ENDXFER — state 7 to 6
DG_CONTROL / DAT_PENDI NGXFERS / MSG_RESET — state 6 to 5
DG_CONTRCL / DAT_USERI NTERFACE / MSG DI SABLEDS — state 5 to 4
DG_CONTRCOL / DAT_IDENTITY / MSG_CLOSEDS — state 4 to 3
Ignore the status returns from the calls prior to the one yielding the desired state. For instance, if a

call during scanning returns TWCC_SEQERROR and the desire is to return to state 5, then use the
following commands.

DG _CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER — state 7 to 6

TWAIN 2.4 Specification 3-39

Chapter 3

DG_CONTROL / DAT_PENDI NGXFERS / MSG_RESET — state 6 to 5

Being sure to confirm that DG_CONTRCL / DAT_PENDI NGXFERS / MSG_RESET returned
success, the return status from DG_CONTRCL / DAT_PENDI NGXFERS / MSG_ENDXFERmay be

ignored.

Legacy Issues

Single Value Capabilities
Data Sources

On M5G_GET always use the preferred container (TW ARRAY, TW ENUMERATI ON or TW RANGE),
even if there is only one value available. Do not use TW ONEVALUE, unless indicated by the
Specification. For TW RANGE the minimum and maximum values should be the same, and the
step value should be zero.

Applications

Be prepared to accept any container returned by the data source.

ICAP_BITDEPTH
Data Sources

Report the number-of-channels times the depth-per-channel. For example, a typical value for
| CAP_BI TDEPTHwhen | CAP_PI XELTYPEis TWPT_RGBis 3 x 8 = 24.

Applications

Ambiguity in the Specification prior to version 2.2 may result in some Data Sources reporting just
the depth-per-channel. In the majority of cases a value of 8 for | CAP_BI TDEPTHwhen
| CAP_PI XELTYPE is TWPT_RGB may be treated as if the bit depth is really 24.

Also, owing to a bug in an old version of the sample driver, some Data Sources may report all of
their possible bit depth values, instead of those that apply just to the current | CAP_PI XELTYPE
value. For instance, with a setting of TWPT_RGB, | CAP_BI TDEPTHmay report allowed values of 1,
8 and 24, when only 24 is really permitted.

CAP_DUPLEXENABLED
Data Sources

If a Data Source supports one of M5G_GET, M5G_GETCURRENT, or M5G_GETDEFAULT for a
capability, it should support all get messages.

Applications

Ambiguity in the Specification prior to version 2.2 may result in some Data Sources not
supporting MSG_GET for CAP_DUPLEXENABLED. The Data Source may only support
MSG_GETCURRENT to determine if duplex option is enabled or not.

3-40 TWAIN 2.4 Specification

CAP_ENDORSER vs CAP_PRINTERINDEX

Technically, endorsers differ from printers. Printers are typically used to mark physical sheets so
that it’s easier to correlate images with physical documents. Endorsers are used to confirm that a
given sheet of paper has passed through the scanner, usually with some kind of non-ink stamp.

True endorsers are rare, and have been used interchangeably with printers. TWAIN applications
and data sources should treat them as identical.

Data Sources

Deprecate the use of CAP_ENDORSER in favor of CAP_PRI NTER, which offers more options. If
there’s a history of using CAP_ENDORSER, map it to CAP_PRI NTERI NDEX.

Applications
Check for CAP_PRI NTERI NDEX, and use it when it’s available. Be prepared to check for
CAP_ENDORSER with pre-TWAIN 2.3 data sources.
CAP_FEEDERLOADED
Data Sources

CAP_FEEDERLOADED reports the current state of the feeder regardless of the setting of any other
capability (even if CAP_FEEDERENABLED is set to FALSE).

Applications

If CAP_FEEDERL QADED returns TWRC _FAI LURE / TWCC _CAPSEQERROR on MSG_GET, make sure
that CAP_FEEDERENBLED is set to TRUE before trying again. CAP_FEEDERL OADED should only
be tested in State 4. Use TW PENDI NGXFERS. Count returned by DG_CONTRCL /

DAT_PENDI NGXFERS / MSG_ENDXFER to determine if more images are pending for transfer.

ICAP_FRAMES
Applications

Some scanners may handle having the origin of a frame as 0,0 differently. The spec states that
when an application is only interested in the extent of image scanned it can set the origin to 0,0
with M5G_SET. Some center feed or right feed scanners may scan from the left edge of the scanner.
They expect the application to center (or right align) the frame using the physical extent of the
scanner.

ICAP_XFERMECH
Data Sources

Applications are supposed to alert a data source to the transfer mechanism they’ll be using in
states 6 and 7 by setting | CAP_XFERMECH. However, not all applications do this. So, when
possible, a data source should tolerate this, and return the image data using whatever

DAT_| MACE* XFER call the application selects.

TWAIN 2.4 Specification 3-41

Chapter 3

3-42 TWAIN 2.4 Specification

Advanced Application Implementation

Chapter Contents

Capabilities. 41
Options for Transferring Data........... 4-17
The ImageDataand Its Layout i 4-23
Transfer of Multiple Images. 4-26
Transfer of Compressed Data 4-32
Alternative User Interfaces. i i 4-35
Grayscale and Color InformationforanImage 4-38

Using TWAIN to acquire a raster image from a device is relatively simple to implement as
demonstrated in Chapter 3, "Application Implementation". However, TWAIN also allows
application developers to go beyond the simple acquisition of a single image in Native (DIB, TIFF
or PICT) format. These more advanced topics are discussed in this chapter.

Capabilities

Capabilities, and the power of an application to negotiate capabilities with the Source, give control
to TWAIN-compliant applications. In Chapter 12, "Operating System Dependencies", you will see
the negotiation of one capability, CAP_XFERCOUNT. This capability is negotiated during State 4 as
is always the case unless delayed negotiation is agreed to by both the application and Source. In
fact, there is much more to know about capabilities.

Capability Values

Several values are used to define each capability. As seen in Chapter 10, "Capabilities", TWAIN
defines a Default Value and a set of Allowed Values for each of the capabilities. The application is
not able to modify the Default Value. However, it is able to limit the values offered to a user to a
subset of the Allowed Values and to select the capability’s Current Value.

Default Value

When a Source is opened, the Current Values for each of its capabilities are set to the TWAIN
Default Values listed in Chapter 10, "Capabilities". If no default is defined by TWAIN, the Source

TWAIN 2.4 Specification 4-1

Chapter 4

4-2

will select a value for its default. An application can return a capability to its TWAIN-defined
default by issuing a DG_CONTROL / DAT_CAPABI LI TY / M5G_RESET operation.

Although TWAIN defines defaults for many of the capabilities, a Source may have a different
value that it would prefer to use as its default because it would be more efficient. For example, the
Source may normally use a 0 bit in a black and white image to indicate white. However, the
default for | CAP_PI XELFLAVOR is TWPF_CHOCCLATE which states that a 0 represents black.
Although the TWAIN default is TWPF_CHOCOLATE, the Source’s preferred default would be
TWPF_VANI LLA. When the application issues a DG_CONTROL / DAT_CAPABI LI TY /
MBG_GETDEFAULT operation, the Source returns information about its preferred defaults. The
Source and application may be able to negotiate a more efficient transfer based on this
information.

Note that this does not imply that the TWAIN defaults should be completely disregarded.
When trying to resolve the conflict between the “preferred” value of a particular data source
capability and the TWAIN-specified default, it should be considered that the problem is similar to
storing and restoring image attributes from session to session. It is reasonable to assume that a
data source will want to store the current values for some capabilities to be restored as the current
values in a future session. It is then also reasonable to expect that these restored values will be
reflected as the current settings for the appropriate capabilities. While storing settings is only
really useful for image attributes (the data source would not store the value of

| CAP_PI XELFLAVOR, but it might store the current | CAP_RESOLUTI ON), it should be stated that
preferred values of a data source are to be treated in the same manner.

At the time of loading the data source, all current values for the appropriate capabilities would be
set to values that have either been restored from a previous session, or those that are “preferred”
by the data source. This current value will remain until it has been explicitly changed by the
calling application, or that application issues a MSG_RESET.

These are best illustrated using examples, since not all capabilities are suitable for preferred
values, and most are not suitable to be stored and restored across multiple scanning sessions.

Example 1:
Scan Parameters are stored in one session and restored in another

1. User configures the data source User Interface with the following parameters: 4x6 inch image
in 24-bit at 200 DPI X and Y resolution

User selects “Scan” and data source signals application to transfer.
Application acquires the image successfully.

Application disables the data source.

S

Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth, and
Resolution.

6. Data source reports to each inquiry the current values that were set by the user: 4x6 inch
image in 24-bit at 200 DPI X and Y resolution.

7. Application closes the data source.

8. During close procedure, the data source stores the current Frame, Pixel Type, Bit Depth and
Resolution.

9. Application opens data source.

TWAIN 2.4 Specification

10. During open procedure, the data source restores current Frame, Pixel Type, Bit Depth and
Resolution.

11. Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth, and
Resolution.

12. Data source reports to each inquiry the current values that were restored from previous
session: 4x6 inch image in 24-bit at 200 DPI X and Y resolution in one session.

Example 2:
Data Source represents the preferred Pixel Flavor without compromising TWAIN Defined
Default value

1. Application opens data source for the first time
2. Application inquires during State 4 about the Default Pixel Flavor

3. Data source reports that the default pixel flavor is TWPF_CHOCOLATE. (See Chapter 10,
"Capabilities".)

4. Application inquires during State 4 about the current pixel flavor.

5. Data source reports that the current pixel flavor is TWPF_VANI LLA (because this device
returns data in that gender natively).

6. Application issues reset to current pixel flavor.

7. During reset operation, data source changes current value to TWPF_CHOCOLATE and prepares
to invert data during transfer to accommodate the calling application request.

There is a condition where this logic falls apart. If the data source wants to return a

TW ENUMERATI ONto a MSG_GET request for a constrained capability, there is a chance that the
Default value imposed by the TWAIN Specification (Chapter 10, "Capabilities") will not exist
within the constrained set of values. In this case, the application should consider the default value
to be undefined. Common sense should dictate that the data source provide some default that is
reasonable within the currently available set of values for safety (a bad index in a

TW ENUMERATI ON could be a disaster). When the default value is actually used (during
MSG_RESET) the constraints shall be lifted, and the original default value will once again exist and
be defined. (See next section on Constrained Capabilities about MSG_RESET) This is only a
problem with a TW ENUMERATI ON container, since it contains an index to the default.

Current Value

The application may request to set the Current Value of a capability. If the Source’s user interface
is displayed, the Current Value should be reflected (perhaps by highlighting). If the application
sets the Current Value, it will be used for the acquire and transfer unless the user or an automatic
Source process changes it. The application can determine if changes were made by checking the
Current Value during State 6.

To determine just the capability’s Current Value, use DG_CONTRCL / DAT_CAPABI LI TY /
MSG_GETCURRENT. To determine both the Current Value and the Available Values, use the
DG_CONTROL / DAT_CAPABI LI TY / MBG_GET operation. For example, you could do a MSG_GET
on | CAP_PI XELTYPE and the Source might return a TW ENUMERATI ON container containing
TWPT_BW TWPT_GRAY, and TWPT_RGB as Available Values.

To set the Current Value:

Use DG_CONTROL / DAT_CAPABI LI TY / MSG_SET and one of the following containers:

TWAIN 2.4 Specification 4-3

Chapter 4

4-4

e TWON _ONEVALUE: Place the desired value in TW ONEVALUE. | t em
* TWON_ARRAY: Place only the desired items in TW ARRAY. | t enLi st .

These must be a subset of the items returned by the Source from a M5SG_GET operation.

It is also possible to set Current Values using the TW ENUMERATI ON and TW RANGE containers.
See the Available Values information for details.

Available Values

To limit the settings the Source can use during the acquire and transfer process, the application
may be able to restrict the Available Values. The Source should not use a value outside these
values. These restrictions should be reflected in the Source’s user interface so unavailable values
are not offered to the user.

For example, if the MSG_GET operation on | CAP_PI XELTYPE indicates the Source supports
TWPT_BW TWPT_GRAY, and TWPT_RGB images and the application only wants black and white
images, it can request to limit the Available Values to black and white.

To limit the Available Values:
Use DG_CONTRCL / DAT_CAPABI LI TY / MSG_SETCONSTRAI NT and one of the following

containers:

* TWON_ENUMERATI ON: Place only the desired values in the
TW ENUMERATI ON. | t enrli st field. The Current Value can also be set at this time by
setting the Cur r ent | ndex to point to the desired value in the | t enli st .

* TWON_RANGE: Place only the desired values in the TW RANGCE fields. The current value
can also be set by setting the Cur r ent Val ue field.

Note: TW ONEVALUE containers cannot be used to limit the Available Values.

Capability Negotiation

The negotiation process consists of three basic parts:

1. The application determines which capabilities a Source supports
2. The application sets the supported capabilities as desired

3. The application verifies that the settings were accepted by the Source

Negotiation (Part 1)
Application Determines Which Capabilities the Source Supports

Step 1
Application allocates a TW CAPABI LI TY structure and fills its fields as follows:

* Cap =the CAP_, | CAP_ or ACAP_ name for the capability it is interested in
¢ ConType = TWON_DONTCARE16
* hCont ai ner =NULL

TWAIN 2.4 Specification

Step 2

Application uses the TW CAPABI LI TY structure in a DG_CONTROL / DAT_CAPABI LI TY /
M5G_GET operation.

Step 3

The Source examines the Cap field to see if it supports the capability. If it does, it creates
information for the application. In either case, it sets its Return Code appropriately.

Step 4

Application examines the Return Code, and maybe the Condition Code, from the operation.
If TWRC_SUCCESS then the Source does support the capability and

* The ConType field was filled by the Source with a container identifier (TWON_ARRAY,
TWON_ENUMERATI ON, TWON_ONEVAL UE, or TWON_ RANGE)

* The Source allocated a container structure of ConType and referenced the hCont ai ner
field to this structure. It then filled the container with values describing the capability’s
Current Value, Default Value, and Available Values.

Based on the type of container and its contents (whose type is indicated by its | t enType
field), the application can read the values. The application must deallocate the container.

If TWRC_FAI LURE and TWCC_CAPUNSUPPORTED

* Source does not support this capability

The application can repeat this process for every capability it wants to learn about. If the
application really only wants to get the Current Value for a capability, it can use the
MBG_GETCURRENT operation instead. In that case, the ConType will just be TWON_ONEVALUE or
TVON_ARRAY but not TWON_RANGE or TWON_ENUMERATI ON.

Note: The capability, CAP_SUPPORTEDCAPS, returns a list of capabilities that a Source supports.
But it doesn’t indicate whether the supported capabilities can be negotiated, If the Source
does not support the CAP_SUPPORTEDCAPS capabilities, it returns TWRC_FAI LURE /
TWCC_CAPUNSUPPORTED.

Negotiation (Part 2)

The Application Sets the Supported Capability as Desired
Step 1
Application allocates a TW CAPABI LI TY structure and fills its fields as follows:
* Cap =the CAP_, | CAP_, or ACAP_ name for the capability it is interested in

* ConType = TWON_ARRAY, TWON_ENUMERATI ON, TWON_ ONEVALUE or TWON_RANGE
(Refer to Chapter 10, "Capabilities" to see each capability and what type(s) of container
may be used to set a particular capability.)

* hCont ai ner =The application must allocate a structure of type ConType and reference
this field to it. (See the next step.)
Step 2

Application allocates a structure of type ConType and fills it. Based on values received from
the Source during the MSG_CET, it can specify the desired Current Value and Available Values
that it wants the Source to use. The application should not attempt to set the Source’s Default
Value, just put an appropriate constant in that field (ex. TWON_DONTCARE32).

TWAIN 2.4 Specification 4-5

Chapter 4

4-6

Note: The application is responsible for deallocating the container structure when the operation
is finished.

Step 3
Send the request to the Source using DG_CONTROL / DAT_CAPABI LI TY /
M5G_SETCONSTRAI NT.

Negotiation (Part 3)
The Application MUST Verify the Result of Their Request

Step 1

Even if a Source supports a particular capability, it is not required to support the setting of
that capability. The application must examine the Return Code from the MSG_SET request to
see what took place.

If TWRC_SUCCESS then the Source set the capability as requested.
If TWRC_CHECKSTATUS then

* The Source could not use one or more of your exact values. For instance, you asked for a
value of 310 but it could only accept 100, 200, 300, or 400. Your request was within its
legitimate range so it rounded it to its closest valid setting.

Use the DG_CONTRCL / DAT_CAPABI LI TY / M5G_CET operation to determine the current
and available settings at this time. This is the only way to determine if the Source’s choice was
acceptable to your application.

If TWRC_FAI LURE / TWCC_BADVAL UE then
* Either the Source is not granting your request to set or restrict the value.

* Or, your requested values were not within its range of legitimate values. It may have
attempted to set the value to its closest available value.

Use the DG_CONTRCL / DAT_CAPABI LI TY / M5G_CET operation to determine the current
and available settings at this time. This is the only way to determine if your application can
continue without your requested values.

You can repeat the setting and verifying processes for every capability of interest to your
application. Remember, your application must deallocate all container structures.

The Most Common Capabilities

TWAIN defines over 150 capabilities. Although the number may seem overwhelming, it is easier
to handle if you recognize that some of the capabilities are more commonly used. Here are some
of these capabilities:

Basic Capabilities

Units

The | CAP_UNI TS capability determines the unit of measure which will be used by the Source.
The default is inches but centimeters, pixels, etc. are allowed. This capability’s value is used
when measuring several other values in capabilities and data structures including:

| CAP_PHYSI CALHEI GHT,
| CAP_PHYSI CALW DTH,
| CAP_XNATI VERESCLUTI ON,

TWAIN 2.4 Specification

| CAP_YNATI VERESCLUTI ON,

| CAP_XRESOLUTI ON,

| CAP_YRESOLUTI ON,
TW_FRANME,

TW. I MAGEI NFO. XResol uti on,
TW | MAGEI NFO. YResol ution
Sense of the Pixel

The | CAP_PI XELFLAVOR specifies how a bit of data should be interpreted when transferred
from Source to application. The default is TWPF_CHOCOLATE which means a 0 indicates black
(or the darkest color). The alternative, TWPF_VANI LLA, means a 0 indicates white (or the
lightest color).

Resolution

The image resolution is reported in the TW | MAGEI NFOstructure. To inquire or set the
Source’s resolution, use | CAP_XRESCLUTI ONand | CAP_YRESOLUTI ON.

Refer also to | CAP_XNATI VERESCOLUTI ONand | CAP_YNATI VERESOLUTI ON.
Image Type Capabilities

Types of Pixel

The application should negotiate | CAP_PI XELTYPE and | CAP_BI TDEPTH unless it can
handle all pixel types at all bit depths. The allowed pixel types are: TWPT_BW TWPT_GRAY,
TWPT_RGB, TWPT_PALETTE, TWPT_CMY, TWPT_CMYK, TWPT_YUWV, TWPT_YUVK,

TWPT_CI EXYZ, and TWPT_| NFRARED.

Depth of the Pixels (in bits)

A pixel type such as TWPT_BWallows only 1 bit per pixel (either black or white). The other
pixel types may allow a variety of bits per pixel (4-bit or 8-bit gray, 24-bit or 48-bit color). Be
sure to set the | CAP_PI XELTYPE first, then set the | CAP_BI TDEPTH.

Parameters for Acquiring the Image

Exposure

Several capabilities can influence this. They include | CAP_BRI GHTNESS, | CAP_CONTRAST,
| CAP_SHADOW | CAP_HI GHLI GHT, | CAP_GAMVA, and | CAP_AUTOBRI GHT.

Scaling

To instruct a Source to scale an image before transfer, refer to | CAP_XSCALI NGand
| CAP_YSCALI NG

Rotation

To instruct a Source to rotate the image before transfer, refer to | CAP_ROTATI ONand
| CAP_ORI ENTATI ON.

Constrained Capabilities and Message Responses

There is some confusion about how the data source should respond to various capability queries
when the application has imposed constraints upon the supported values. The following
guidelines should help clarify the situation.

TWAIN 2.4 Specification 4-7

Chapter 4

4-8

MSG_RESET

It is known that this call resets the current value of the requested capability to the default. It must
also be stated that this call will also reset any application imposed constraints upon the requested
capability.

MSG_GETCURRENT, and MSG_GETDEFAULT

It is intuitive to assume that this message should not be supported by capabilities that have no
Current or Default value. However, the specification says otherwise in Chapter 10, "Capabilities"
(a good example is CAP_SUPPCORTEDCAPS). In this case, it makes sense to simply respond to these
messages in the same manner as MSG_GET.

It can also be assumed that it is more intuitive for a data source to respond to this capability with a
TW ONEVALUE container in all cases that a TW ONEVAL UE container is allowed.

MSG_GET

If an application has constrained the current capability, then the data source response to this
message should reflect those constraints. Otherwise, this should respond with all the values that
the data source supports. Of course, the number of values that can be placed in the response are
restricted by the allowed containers for the particular current capability outlined in Chapter 10,
"Capabilities".

MSG_SET (applies if either the application or the driver is TWAIN 2.1 or less)

As indicated in Chapter 7, "Operation Triplets", description of this capability triplet:

“Current Values are set when the container is a TW ONEVALUE or TW ARRAY. Available and
Current Values are set when the container is a TW ENUMERATI ON or TW RANGE.”

To further clarify this operation, it should be stated that when an application imposes a constraint,
the data source must consider the set of supported values and the set of requested constraints. The
resulting set of values shall contain only the values that are shared by those supported and those

requested.

A condition may arise after constraints are imposed, where the default value is no longer within
the set of supported values. When using a TW ENUMERATI ON, the reported default index should
be changed by the data source to something that falls within the new constrained set. This is
simply a precaution to ensure it is a valid index. In this case, the Default index in a

TW ENUMERATI ON loses meaning and should be ignored by applications, since MSG_RESET shall
cause the constraints to be eliminated.

MSG_SET (applies if both the application and the driver is TWAIN 2.2 or more)

When both the application and the driver are TWAIN 2.2 or higher MSG_SET only changes the
current value, it has no effect on the available values. This applies regardless of the container type
used. In other words, TW ENUVMERATI ONand TW RANGE can be used to set the current value using
MBG_SET. In the case of TW ENUVERATI ON only the ItemType, CurrentIndex and ItemList fields
are used to set the current value. In the case of TW RANGE only the ItemType and CurrentValue
fields are used.

TWAIN 2.4 Specification

MSG_SETCONSTRAINT (applies if both the application and the driver is TWAIN 2.2 or
more)

As noted in Chapter 7, "Operation Triplets":

“Current Values are set when the container is a TW ONEVALUE or TW ARRAY. Available and
Current Values are set when the container is a TW_ENUVERATI ON or TW RANGE.”

To further clarify this operation, it should be stated that when an application imposes a constraint,
the data source must consider the set of supported values and the set of requested constraints. The
resulting set of values shall contain only the values that are shared by those supported and those

requested.

A condition may arise after constraints are imposed, where the default value is no longer within
the set of supported values. When using a TW ENUMERATI ON, the reported default index should
be changed by the data source to something that falls within the new constrained set. This is
simply a precaution to ensure it is a valid index. In this case, the Default index in a

TW ENUMERATI ON loses meaning and should be ignored by applications, since MSG_RESET shall
cause the constraints to be eliminated.

Capability Containers in Code Form

Capability information is passed between application and Source by using data structures called
containers: TW ARRAY, TW ENUMERATI ON, TW ONEVALUE, and TW RANGE. The actions needed
to create (pack) and read (unpack) containers are illustrated here in the following code segments.
Containers are flexible in that they can be defined to contain one of many types of data. Only one
ItemType (TWI'Y_xxxX) is illustrated per Container (TWON_xxXxX) here. Refer to the toolkit disk
for complete packing and unpacking utilities that you can use with containers.

Reading (unpacking) a Container from a MSG_GET Operation

R R e T
/| Exanpl e of DG CONTROL / DAT_CAPABILITY / MSG GET
R LT T
TW CAPABI LITY twCapability;

TW I NT16 rc

/1 Setup TW CAPABILITY Structure

twCapability. Cap = Cap; [/Fill in capability of interest
twCapabi lity. ConType = TWON_DONTCARELG;
t wCapabi |l i ty. hContai ner = NULL;
/1 Send the Triplet
rc = (*pDSM_Ent ry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_CAPABI LI TY,
MBG_GET,
(TW MEMREF) &t wCapabi | i ty);

TWAIN 2.4 Specification 4-9

Chapter 4

4-10

/] Check return code
if (rc == TWRC_SUCCESS)
{
/1Switch on Container Type
switch (twCapability. ConType)

{

[]----- ENUVMERATI ON
case TWON_ENUMERATI ON:
{
pTW ENUVERATI ON pval Enum
TW Ul NT16 val ueUl6;
TW Ul NT16 i ndex;
pval Enum =

(pPTW_ENUMERATI ON) d obal Lock(twCapabi | i ty. hCont ai ner) ;

Num t ens = pval Enum >Nuni t ens;

Current | ndex pval Enum >Curr ent | ndex;

Def aul t | ndex

pval Enum >Def aul t | ndex;
for (index = 0; index < pval Enum >Numl t ens;
{

if (pval Enum >l tenmlype == TWY_Ul NT16)

{

i ndex++)

val ueUl6 = ((TW. U NT16) (pval Enum >l t enli st[i ndex*2]));

//Store |Item Val ue

}

el se if (pval OneVal ue->ItenType == TW'Y_BOQL)

{

val ueBool = ((TW.BOOL*) &val Enum >l tenli st)[index];

//Store |Item Val ue

}
d obal Unl ock(twCapabi lity. hCont ai ner);

}
br eak;
[----- ONEVALUE
case TWON_ONEVALUE:

TWAIN 2.4 Specification

{
pTW ONEVALUE pval OneVal ue;

TW BOOL val ueBool ;

pval OneVal ue =
(pTW. ONEVALUE) A obal Lock(twCapability. hCont ai ner);

if (pval OneVal ue->ltenfType == TWY_BOQL)

{
val ueBool = (TW.BOQL) pval OneVal ue->ltem
//Store |Item Val ue

}
d obal Unl ock(twCapabi lity. hCont ai ner);

}

br eak;

case TWON_RANGE:
{
pTW RANGE pval Range;
pTW FI X32 pTVEi x32;
fl oat val ueF32;
TW Ul NT16 i ndex;
pval Range = (pTW RANGE) d obal Lock(twCapability. hCont ai ner);
i f ((TW.Ul NT16) pval Range- >l t enType == TWI'Y_FI X32)
{
pTWFi x32
val ueF32

&(pval Range- >M nVal ue) ;
FI X32ToFl oat (* pTWFi x32) ;

//Store |Item Val ue
pTWFi x32
val ueF32

&(pval Range- >MaxVal ue) ;
FI X32ToFl oat (* pTWFi x32) ;

//Store |Item Val ue
pTWFi x32
val ueF32

&(pval Range- >St epSi ze) ;
FI X32ToFl oat (* pTWFi x32) ;

//Store |Item Val ue

}
d obal Unl ock(twCapabi lity. hCont ai ner);

}

br eak;

TWAIN 2.4 Specification 4-11

Chapter 4

[]----- ARRAY
case TWON_ARRAY:
{
pTW ARRAY pval Array;
TW Ul NT16 val ueUl6;
TW Ul NT16 i ndex;

pval Array = (pTW ARRAY) d obal Lock(twCapability. hCont ai ner);

for (index = 0; index < pval Array->Nunitens; index++)

{
if (pval Array->ltemlype == TW'Y_Ul NT16)
{
val ueUl6 = ((TW.UI NT16) (pval Array->ltenlist[index*2]));
/] Store Item Val ue
}
}
d obal Unl ock(twCapabi lity. hCont ai ner);
}
br eak;

} /1 End Switch Statenent
d obal Free(twCapabi lity. hCont ai ner);
} else {

/] Capability MSG GET Fail ed check Condition Code
}

/**

* Fi x32ToF| oat

* Convert a FIX32 value into a floating point val ue.

**/

float FIX32ToFl oat (TWFIX32 fix32)

{
fl oat floater;
floater = (float)fix32.Wole + (float)fix32.Frac / 65536.0;
return fl oater;

}

Creating (packing) a Container for a MSG_SET Operation

/1 Exanpl e of DG CONTROL / DAT_CAPABI LI TY / MSG_SET

4-12 TWAIN 2.4 Specification

TW CAPABI LI TY twCapability;

TW.I NT16 rc;
TW Ul NT32 Nunmber Of I t ens;
twCapabi lity. Cap = Cap; //1nsert Capability of Interest

t wCapabi l i ty. ConType = Cont ai ner;

/1 Use TWON ONEVALUE or TWON ARRAY to set current val ue
/1 Use TWON _ENUMERATI ON or TWON RANGE to limt avail abl e val ues

switch (twCapability. ConType)

- ENUMERATI ON

case TWON_ENUMERATI ON:

{

pTW ENUVERATI ON pval Enum
/1 The nunmber of Itenms in the ItenList
NunberOf I tens = 2;

/1A'l ocate nmenory for the container and additional Iteniist
/] entries

twCapabi | ity. hContai ner = d obal Al | oc(GHND,
(si zeof (TW ENUMERATI ON) + sizeof (TW.U NT16) *

(NumberOfltens)));

}

pval Enum = (pTW ENUMERATI ON) A obal Lock(twCapabi | i ty. hCont ai ner) ;
pval Enum >Num tenms = 2 // Nunber of Itens in Itenlist

pval Enum >l t enilfype = TWY_Ul NT16;
((TW.U NT16) (pval Enum >l tenlist[0]))
((TW.U NT16) (pval Enum >l tenlist[1]))
d obal Unl ock(twCapabi lity. hCont ai ner);

noo

br eak;

- ONEVALUE
case TWON_ONEVALUE:
{
pTW ONEVALUE pval OneVal ue;
twCapabi | ity. hContai ner = d obal Al | oc(GHND,

si zeof (TW ONEVALUE)) ;

TWAIN 2.4 Specification

4-13

Chapter 4

pval OneVal ue =
(pTW. ONEVALUE) G obal Lock(twCapability. hCont ai ner);

(TW_UI NT16) pval OneVal ue- >l t enType = TWY_UI NT16;
(TW_UI NT16) pval OneVal ue->ltem = 1;
d obal Unl ock(twCapabi lity. hCont ai ner);

}
br eak;
[]----- RANGE

case TWON RANGE:

{

pTW RANGE pval Range;

TW FI X32 TWFi x32;

fl oat val ueF32;
twCapability. hContai ner = d obal Al | oc(GHND, si zeof (TW RANGE)) ;
pval Range = (pTW RANGE) A obal Lock(twCapability. hCont ai ner);
(TW. Ul NT16) pval Range- >l t enType = TWIY_FI X32;
val ueF32 = 100;
TWFi x32 = Fl oat ToFI X32 (val uekF32);
pval Range->M nVal ue = *((pTW.I NT32) &TWFi x32);
val ueF32 = 200;
TWFi x32 = Fl oat ToFI X32 (val uekF32);
pval Range- >MaxVal ue = *((pTW.I NT32) &TWFi x32);
d obal Unl ock(twCapabi lity. hCont ai ner);

}

br eak;

[]----- ARRAY

case TWON_ARRAY:

{

pTW ARRAY pval Array;

// The nunber of Itens in the |tenList
NunberOf ltens = 2;

/1A'l ocate nmenory for the container and additional |teniist
entries

twCapabi | ity. hCont ai ner = d obal Al | oc(GHND,
(si zeof (TWARRAY) + sizeof (TWU NT16) * (NumberCOfltens)));

pval Array = (pTW ARRAY) d obal Lock(twCapabi lity. hCont ai ner);

4-14 TWAIN 2.4 Specification

(TW. Ul NT16) pval Array- >l tenType = TWIY_Ul NT16;
(TW.UI NT16) pval Array->Nur tens = 2;

((TW_UI NT16) (pval Array->ltenlist[0]))
((TW_UI NT16) (pval Array->ltenlist[1]))

G obal Unl ock(twCapabi lity. hContai ner);

I
N R

}
br eak;
}
Hf----- MSG_SET
rc = (*pDSM_Ent ry) (&Appl D,
&Sour cel D,
DG_CONTROL,
DAT_CAPABI LI TY,
MSG_SET,

(TW_MEMREF) &t wCapabi lity);
G obal Free(twCapabi i ty. hCont ai ner);

switch (rc)

{
case TWRC_SUCCESS
[l Capability's Current or Avail able value was set as specified
case TWRC_CHECKSTATUS
/1 The Source matched the specified value(s) as closely as
possi bl e
/I Do a MSG GET to determine the settings nmade
case TWRC_FAI LURE:
/] Check the Condition Code for nmore information
}

/**

* Fl oat ToFi x32
* Convert a floating point value into a FI X32.
KRRk Rk K K Rk Ak Ak kKKK Rk Ak kK kK kKK kK kK KKk Ak kK kK kKR KAk
TW FI X32 Fl oat ToFi x32 (float floater)
{
TW FI X32 Fi x32_val ue;
TWINT32 value = (TWINT32) (floater * 65536.0 + 0.5);
Fi x32_val ue. Vol e = val ue >> 16;
Fi x32_val ue. Frac = val ue & 0x0000f fffL;

TWAIN 2.4 Specification 4-15

Chapter 4

4-16

return (Fi x32_val ue);

Delayed Negotiation - Negotiating Capabilities After State 4

Applications may inquire about a Source’s capability values at any time during the session with
the Source. However, as a rule, applications can only request to set a capability during State 4.
The rationale behind this restriction is tied to the display of the Source’s user interface when the
Source is enabled. Many Sources will modify the contents of their user interface in response to
some of the application’s requested settings. These user interface modifications prevent the user
from selecting choices that do not meet the application’s requested values. The Source’s user
interface is never displayed in State 4 so changes can be made without the user’s awareness.
However, the interface may be displayed in States 5 through 7.

Some capabilities have no impact on the Source’s user interface and the application may really
want to set them later than State 4. To allow delayed negotiation, the application must request,
during State 4, that a particular capability be able to be set later (during States 5, 6 or 7). The
Source may agree to this request or deny it. The request is negotiated by the application with the
Source by using the DG_CONTRCL / DAT_CAPABI LI TY operations on the CAP_EXTENDEDCAPS
capability.

On the CAP_EXTENDEDCAPS capability, the DG_CONTROL / DAT_CAPABI LI TY operations:

MSG_GET

Indicates the capabilities the Source is willing to negotiate in States 5, 6 or 7.

MSG_SET

Specifies which capabilities the application wishes to negotiate in States 5, 6 or 7. For TWAIN
2.3 or later data sources, this value will already to be set to the values allowed by the data
source, the list never starts empty.

MSG_GETCURRENT

Provides an array of the capabilities the Source allows to be negotiated in States 5, 6 and 7. For
TWAIN 2.3 or later data sources, this value will already to be set to the values allowed by the
data source, the list never starts empty.

As with any other capability, if the Source does not support negotiating CAP_EXTENDEDCAPS, it
will return the Return Code TWRC_FAI LURE with the Condition Code TWCC_CAPUNSUPPORTED.

If an application attempts to set a capability in State 5, 6 or 7 and the Source has not previously
agreed to this arrangement, the operation will fail with a Return Code of TWRC_FAI LURE and a
Condition Code of TWCC_SEQERROR.

If an application does not use the Source’s user interface but presents its own, the application
controls the state of the Source explicitly. If the application wants to set the value of any
capability, it returns the Source to State 4 and does so. Therefore, an application using its own
user interface will probably not need to use CAP_EXTENDEDCAPS.

TWAIN 2.4 Specification

Options for Transferring Data

As discussed previously, there are three modes defined by TWAIN for transferring data:

* Native
* DiskFile
* Buffered Memory

A Source is required to support Native and Buffered Memory transfers.

Native Mode Transfer

The use of Native mode, the default mode, for transferring data was covered in Chapter 3,
"Application Implementation". There is one potential limitation that can occur in a Native mode
transfer. That is, there may not be an adequately large block of RAM available to hold the image.
This situation will not be discovered until the transfer is attempted when the application issues
the DG_| MAGE / DAT_| MAGENATI VEXFER / MSG_GET operation.

When the lack of memory appears, the Source may respond in one of several ways. It can:

* Simply fail the operation.

* Clip the image to make it fit in the available RAM - The Source should notify the user that the
clipping operation is taking place due to limited RAM. The clipping should maintain both the
aspect ratio of the selected image and the origin (upper-left).

* Interact with the user to allow them to resize the image or cancel the capture.

The Return Code / Condition Code returned from the DG_| MAGE / DAT_| MAGENATI VEXFER /
MBG_GET operation may indicate one of these actions occurred.

If the Return Code is TWRC_XFERDONE:

This indicates the transfer was completed and the session is in State 7. However, it does not
guarantee that the Source did not clip the image to make it fit. Even if the application issued a
DG_| MAGE / DAT_I MACEI NFO/ MSG_CET operation prior to the transfer to determine the image
size, it cannot assume that the ImageWidth and ImageLength values returned from that operation
really apply to the image that was ultimately transferred. If the dimensions of the image are
important to the application, the application should always check the actual transferred image
size after the transfer is completed. To do this:

1. Execute a DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER operation to move the
session from State 7 to State 6 (or 5).

2. Determine the actual size of the image that was transferred by reading the header of the
actual image data transferred.

See Chapter 12, "Operating System Dependencies" for more information.
If the Return Code is TWRC_CANCEL:

The acquisition was canceled by the user. The session is in State 7. Execute a DG_CONTROL /
DAT_PENDI NGXFERS / MSG_ENDXFER operation to move the session from State 7 to State 6 (or 5).

TWAIN 2.4 Specification 4-17

Chapter 4

4-18

If the Return Code is TWRC_FAILURE:

Check the Condition Code to determine the cause of the failure. The session is in State 6. No
memory was allocated for the DIB, TIFF or PICT. The image is still pending. If lack of memory
was the cause, you can try to free additional memory or discard the pending image by executing
DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER.

Disk File Mode Transfer

The disk file mode is identified as TWEX_FI LE. Sources are not required to support Disk File
Transfer so it is important to verify its support.

Determine if a Source Supports the Disk File Mode

Use the DG_CONTROL / DAT_CAPABI LI TY / MSG_GET operation.
Set the TW CAPABI LI TY’s Cap field to | CAP_XFERMECH.

The Source returns information about the transfer modes it supports in the container structure
pointed to by the hContainer field of the TW CAPABI LI TY structure. The disk file mode is
identified as TW5X_FI LE.

After Verifying Disk File Transfer is Supported, Set Up the Transfer

During State 4:

* Set the | CAP_XFERMECH to TWSX_FI LE. Use the DG_CONTROL / DAT_CAPABI LI TY /
MBG_SET operation.

* Use the DG_CONTRCL / DAT_CAPABI LI TY / MSG_CET operation to determine which file
formats the Source can support. Set TW CAPABI LI TY. Cap to | CAP_| MAGEFI LEFORVAT
and execute the MSG_CET. The Source returns the supported format identifiers which
start with TWFF_ and may include TWFF_PI CT, TWFF_BMP, TWFF_TI FF, etc. They are
listed in the TWAI N. Hfile and in the Constants section of Chapter 8, "Data Types and Data
Structures".

During States 4, 5, or 6:

To set up the transfer the DG_CONTRCL / DAT_SETUPFI LEXFER operation of M5G_CET,
MSG_GETDEFAULT, and MSG_SET can be used.

The data structure used in the DSM_Entry call is a TW SETUPFI LEXFER structure (for
DAT_SETUPFI LEXFER):

typedef struct {

TW STR255 Fi | eName; /* File to contain data */
TW Ul NT16 For mat ; /* A TWFF_xxxx const ant */
TW HANDLE Vr ef Num /* Used for Macintosh only */

} TW.SETUPFI LEXFER, FAR *pTW SETUPFI LEXFER;

The application could use the MSG_GETDEFAULT operation to determine the default file
format and filename (TWAI N. TMP or TWAI N. AUD in the current directory). If acceptable, the
application could just use that file. However, most applications prefer to set their own values
for filename and format. The MSG_SET operation allows this. It is done during State 6. To set
your own filename and format, do the following;:

1. Allocate the required TW SETUPFI LEXFER structure. Then, fill in the appropriate fields:

TWAIN 2.4 Specification

a. Fil eNane - the desired filename. On Windows, be sure to include the complete path

name.

b. Format - the constant for the desired, and supported, format (TWFF_xxxx). If you
set it to an unsupported format, the operation returns TWRC_FAI LURE /
TWCC BADVALUE and the Source resets itself to write data to the default file.

c. VRef Num- On Macintosh, write the file’s volume reference number. On Windows,
fill in the field with a TWON_DONTCARE16.

2. Invoke the DG_CONTROL / DAT_SETUPFI LEXFER / M5G_SET as appropriate.

Execute the Transfer into the File

After the application receives the MSG_XFERREADY notice from the Source and has issued the

DG_

CONTROL / DAT_SETUPFI LEXFER / M5G_GET.

Use the following operation: DG_| MAGE / DAT_| MAGEFI LEXFER / M5G_GET

This operation does not have an associated data structure but just uses NULL for the pDat a
parameter in the DSM Ent ry call.

If the application has not specified a filename (during the setup) - the Source will use either its
default file or the last file information it was given.

If the file specified by the application does not exist - the Source should create it.

If the file exists but already has data in it - the Source should overwrite the existing data.
Notice, if you are transferring multiple files and using the same file name each time, you will
overwrite the data unless you copy it to a different filename between transfers.

Note: The application cannot abort a Disk File transfer once initiated. However, the Source’s

user interface may allow the user to cancel the transfer.

Following execution, be sure to check the Return Code:

TWAIN 2.4 Specification

TWRC_XFERDONE: File was written successfully. The application needs to invoke the
DG _CONTROL / DAT_PENDI NGXFERS / M5G_ENDXFER to transition the session back to State 6
(or 5) as was illustrated in Chapter 3, "Application Implementation".

TWRC_CANCEL: The user canceled the transfer. The contents of the file are undefined.
Invoke DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER to transition the session back
to State 6 (or 5) as was illustrated in Chapter 3, "Application Implementation".

TWRC_FAILURE

The Source remained in State 6.

The contents of the file are undefined.

The image is still pending. To discard it, use DG_CONTROL / DAT_PENDI NGXFERS /
MSG_ENDXFER.

4-19

Chapter 4

Check the Condition Code to determine the cause of the failures. The alternatives are:
TWCC_BADDEST = Operation aimed at invalid Source

TWCC_OPERATI ONERROR = Either the file existed but could not be accessed or a system
error occurred during the writing

TWCC_SEQERRCR = Operation invoked in invalid state (i.e. not 6)

Buffered Memory Mode Transfer
Set Capability Values for the Buffered Memory Mode, if Desired

Data is typically transferred in uncompressed format. However, if you are interested in knowing
if the Source can transfer compressed data when using the buffered memory mode, perform a
DG _CONTROL / DAT_CAPABI LI TY / MBG_GET on the | CAP_COWVPRESSI ON. The values will
include TWCP_NONE (the default) and perhaps others such as TWCP_PACKBI TS, TWCP_JPEG etc.
(See the list in the Constants section of Chapter 8, "Data Types and Data Structures".) More
information on compression is available later in this chapter in the section called Transfer of
Compressed Data.

Set up the Transfer

During State 4:

Set the | CAP_XFERMECH to TWEX_MEMCRY by using the DG_CONTRCL / DAT_CAPABI LI TY /
M5G_SET operation.

During States 4, 5, or 6:

The DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation is used by the application to
determine what buffer sizes the Source wants to use during the transfer. The Source might
have more accurate information in State 6.

The data structure used in the DSM Ent ry call is a TW SETUPMEMXFER structure:
typedef struct {
TWUNT32 MnBufSize /* Mnimumbuffer size in bytes */
TW.U NT32 MaxBuf Size /* Maxi mumbuffer size in bytes */

TWUNT32 Preferred /* Preferred buffer size in bytes */
} TW SETUPMEMXFER, FAR *pTW SETUPMEMXFER;
The Source will fill in the appropriate values for its device.

Buffers Used for Uncompressed Strip Transfers

* The application is responsible for allocating and deallocating all memory used during the
buffered memory transfer.

* For optimal performance, create buffers of the Preferred size.

¢ In all cases, the size of the allocated buffers must be within the limits of M nBuf Si ze to
MaxBufSize. If outside of these limits, the Source will fail the transfer operation with a Return
Code of TWRC_FAI LURE / TWCC_BADVALUE.

* If using more than one buffer, all buffers must be the same size.

* Raster lines must be double-word aligned and padded with zeros is recommended .

4-20 TWAIN 2.4 Specification

Execute the Transfer Using Buffers

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation:

* Allocate one or more buffers of the same size. The best size is the one indicated by the
TW SETUPMEMXFER Preferred field. If that is impossible, be certain the buffer size is between
MinBufSize and MaxBufSize.

e Allocate the TW | MAGEMEMXFER structure. It will be used in the DG_| MAGE /
DAT_| MACEMEMXFER / MS5G_GET operation.

The TW | MAGEMEMXFER structure looks like this:

typedef struct {
TW Ul NT16 Conpression;
TW U NT32 Byt esPer Row;
TW Ul NT32 Col umms;
TW Ul NT32 Rows;
TWUI NT32 XO fset;
TW U NT32 YO fset;
TW Ul NT32 BytesWitten;
TW MEMORY Menory;
} TW | MAGEMEMXFER, FAR *pTW | MAGEMEMXFER;

Fill in the TW | MAGEMEMXFER's first field with TWON_DONTCARE16 and the following six fields
with TWON_DONTCARE32.

The TW MEMORY structure embedded in there looks like this:

typedef struct {
TW Ul NT32 Fl ags;
TW Ul NT32 Length;
TW MEMREF TheMem
} TW MEMORY, FAR *pTW MEMORY;

Fill in the TW MEMORY structure as follows:
Memory.Flags
Place TWWF_APPOWNS bit-wise ORed with TWWF_PO NTER or TWWF_HANDLE

Memory.Length
The size of the buffer in bytes

Memory.TheMem

A handle or pointer to the memory buffer allocated above (depending on which one was
specified in the Flags field).

Following each buffer transfer, the Source will have filled in all the fields except Memory which it
uses as a reference to the memory block for the data.

The flow of the transfer of buffers is as follows:

TWAIN 2.4 Specification 4-21

Chapter 4

4-22

Step 1

Buffered Memory transfers provide no embedded header information. Therefore, the
application must determine the image attributes. After receiving the MSG_XFERREADY, i.e.
while in State 6, the application issues the DG _| MAGE / DAT_I| MAGEI NFO/ M5G_GET and
DG_| MACE / DAT_I MAGELAYQUT / MSG_CET operations to learn about the image’s bitmap
characteristics and the size and location of the original image on the original page (before
scaling or other processing). If additional information is desired, use the DG_CONTROL /
DAT_CAPABI LI TY / MSG_GET operation.

Step 2

The application issues DG_| MAGE / DAT_I| MAGEMEMXFER / M5G_CET.
Step 3

The application checks the Return Code.

« If TWRC_SUCCESS:

Examine the TW | MAGEMEMXFER structure for information about the buffer. If you plan
to reuse the buffer, copy the data to another location.

Loop back to Step 2 to get another buffer. Be sure to reinitialize the information in the
TW | MAGEMEMXFER structure (including the Memory fields), if necessary. Issue another
DG_| MAGE / DAT_| MAGEMEMXFER / M5G_GET operation.

e If TWRC_XFERDONE:

This is how the Source indicates it just transferred the last buffer successfully. Examine
the TW | MAGEMEMXFER structure for information about the buffer. Perhaps, copy the
data to another location, as desired, then go to Step 4.

« If TWRC_CANCEL:

The user aborted the transfer. The application must send a DG_CONTRCL /
DAT_PENDI NGXFERS / M5G_ENDXFER as described in Chapter 3, "Application
Implementation" to move from State 7 to State 6 (or 5).

e If TWRC_FAI LURE:

Examine the Condition Code to determine the cause and handle it.
If the failure occurred during the transfer of the first buffer, the session is in State 6. If the
failure occurred on a subsequent buffer, the session is in State 7.

The contents of the buffer are invalid and the transfer of the buffer is still pending. To
abort it, use DG_CONTROL / DAT_PENDI NGXFERS / M5G_ENDXFER.

Step 4

Once the TWRC_XFERDONE has been returned, the application must send the DG_CONTRCL /
DAT_PENDI NGXFERS / M5G_ENDXFER to conclude the transfer. This was described in
Chapter 3, "Application Implementation" in the section called State 7 to 6 to 5 - Conclude the
Transfer.

Note: The majority of Sources divide the image data into strips when using buffered transfers.

A strip is a horizontal band starting at the leftmost side of the image and spanning the
entire width but covering just a portion of the image length. The application can verify
that strips are being used if the information returned from the Source in the

TW | MAGEMEMXFER structure’s XOF f set field is zero and the Columns field is equal to
the value in the TW | MAGEI NFOstructure’s | mageW dt h field.

TWAIN 2.4 Specification

An alternative to strips is the use of tiles although they are used by very few Sources. Refer to the
TW | MAGEMEMXFER information in Chapter 8, "Data Types and Data Structures" for an
illustration of tiles.

Buffered Memory Mode Transfer With File Format

This operation works very much like Buffered Memory Mode, but the data transferred from the
Source to the Application conforms to the image file format specified by a previous call to

DG | MAGE / DAT_SETUPFI LEXFER / MSG_GET. There is no requirement for the data to be
transferred as complete image lines or for any kind of padding, the data is assumed to be self-
contained and self-describing.

The ImageData and Its Layout

The image which is transferred from the Source to the application has several attributes. Some
attributes describe the size of the image. Some describe where the image was located on the
scanner. Still others might describe information such as resolution or number of bits per pixel.
TWAIN provides means for the application to learn about these attributes.

Users are often able to select and modify an image’s attributes through the Source’s user interface.
Additionally, TWAIN provides capabilities and operations that allow the application to impact
these attributes prior to acquisition and transfer.

Getting Information About the Image That will be Transferred

Before the transfer occurs, while in State 6, the Source can provide information to the application
about the actual image that it is about to transfer. Note, the information is lost once the transfer
takes place so the application should save it, if needed. This information can be retrieved through
two operations:

« DG | MAGE / DAT | MAGELAYOUT / MSG_GET
« DG | MAGE / DAT | MAGEI NFO/ MSG_GET

The area of an image to be acquired will always be a rectangle called a frame. There may be one or
more frames located on a page. Frames can be selected by the user or designated by the
application. The TW | MAGELAYQUT structure communicates where the image was located on the
original page relative to the origin of the scanner. It also indicates, in its FrameNumber field, if
this is the first frame, or a later frame, to be acquired from the page.

The TW | MAGELAYQOUT structure looks like this:

typedef struct {
TW _FRAME Fr ame;
TW Ul NT32 Docunent Nunber ;
TW Ul NT32 PageNunber ;
TW Ul NT32 FrameNunber ;
} TW.I MAGELAYQUT, FAR *pTW | MAGELAYQUT;

The TW FRAME structure specifies the values for the Left, Right, Top, and Bottom of the frame to
be acquired based on the origin of the scanner. Values are given in | CAP_UNI TS.

TWAIN 2.4 Specification 4-23

Chapter 4

4-24

Origin —7 5 .
=2
of Scanner o <
35 5
o &
A = | <
Origin "~ =d = E
of Page EE é‘ E £ E
TW_IMAGELAYOUT. Image S
Frame. =
Left ready g
to be 3
Acquired| =&
ZE
|=5é=
TW_IMAGELAYOUT. 5 >
- TW_IMAGEINFQ.
Frame. =\
Right ImageWidth

Figure 4-1. TW FRAME Structure

The DG _| MAGE / DAT_I MAGEI NFO/ MSG_GET operation communicates other attributes of the
image being transferred. The TW | MAGEI NFOstructure looks like this:

typedef stru
TW FI X32
TW FI X32
TW. I NT32
TW. I NT32
TW.I NT16
TW I NT16
TW.I NT16
TW BOOL
TW I NT16
TW Ul NT16

ct {
XResol uti on;
YResol uti on;
| mageW dt h;
| magelLengt h;
Sanpl esPer Pi xel ;
Bi t sPer Sanpl e[8] ;
Bi t sPer Pi xel ;
Pl anar ;
Pi xel Type;
Conpr essi on;

} TW.I MAGEI NFO, FAR * pTW.| MAGEI NFQ,

The | mageW dt h and | mageLengt h relate to the frame described by the TW | MAGELAYOUT
structure after | CAP_ROTATI ONis taken into account.

Changing the Image Attributes

Normally, the user will select the desired attributes. However, the application may wish to do this
initially during State 4. For example, if the user interface will not be displayed, the application
may wish to select the frame. The application can use a DG_| MAGE / DAT_| MAGELAYQUT /
MSG_SET operation to define the area (frame) to be acquired. Although, there is no corresponding

DG | MAGE / DAT |

MACEI NFO / MSG_SET operation, the application can change those attributes

by setting capabilities and the TW | MAGELAYQUT data structure.

Here are the relationships:

TW_IMAGEINFO fi

elds Capability or data structure that impacts the attribute

XResol uti on

| CAP_XRESOLUTI ON

TWAIN 2.4 Specification

TW_IMAGEINFO fields Capability or data structure that impacts the attribute

YResol ution | CAP_YRESOLUTI ON

| mageW dt h TW. | MAGELAYOUT. TW FRAME. Ri ght - TW FRAME. Left
* %

| magelLengt h TW | MAGELAYQUT. TW FRAME. Bott om - TW FRAME. Top
* %

Sanpl esPer Pi xel | CAP_PI XELTYPE (i.e. TWPT_BWhas 1, TWPT_RGB has 3)

Bi t sPer Sanpl e Calculated by Bi t sPer Pi xel divided by Sanpl esPer Pi xel

Bi t sPer Pi xel | CAP_BI TDEPTH

Pl anar | CAP_PLANARCHUNKY

Pi xel Type | CAP_PI XELTYPE

Conpr essi on | CAP_COVPRESSI ON

**| ageW dt h and | magelLengt h are actually provided in pixels whereas TW FRAME uses
| CAP_UNI TS. If | CAP_ROTATI ONis 90 or -90 then | nrageW dt h and | nrageLengt h are
exchanged.

Resolving Conflict Between ICAP_FRAMES, ICAP_SUPPORTEDSIZES, DAT_IMAGELAYOUT

Since there are several ways to negotiate the scan area, it becomes confusing when deciding what
should take precedence. It is logical to assume that the last method used to set the frame will
dictate the current frame. However, it may still be confusing to decide how that is represented
during a MSG_GET operation for any of the three methods. The following behavior is suggested.

Note: Frame extents are only limited by | CAP_PHYSI CALW DTHand | CAP_PHYSI CALHEI GHT.

TWAIN 2.4 Specification

Setting | CAP_SUPPORTEDSI ZES does NOT imply a new extent limitation. TWES_XXXX
sizes combined with | CAP_ORI ENTATI ON are simply predefined fixed frame sizes.

If the frame is set in DAT_| MAGELAYOUT

* | CAP_FRAMES shall respond to M5SG_GETCURRENT with the dimensions of the frame set
in the DAT_| MAGELAYQUT call.

e | CAP_SUPPORTEDSI ZES shall respond to MSG_GETCURRENT with TWSS_NONE
If the current frame is set from | CAP_FRAMES

* DAT_| MAGELAYQUT shall respond with the dimensions of the current frame set in
| CAP_FRAMES

* | CAP_SUPPORTEDSI ZES shall respond to MSG_GETCURRENT with TWSS_NONE
If the current fixed frame is set from | CAP_SUPPORTEDSI ZES

e DAT_I MAGELAYQUT shall respond to MSG_GET with the dimensions of the fixed frame
specified in | CAP_SUPPORTEDS| ZES combined with | CAP_ORI ENTATI ON.

* | CAP_FRAMES shall respond to M5SG_GETCURRENT with the dimensions of the fixed
frame specified in | CAP_SUPPORTEDSI ZES combined with | CAP_ORI ENTATI ON.

4-25

Chapter 4

ICAP_ROTATION, ICAP_ORIENTATION Affect on ICAP_FRAMES, DAT_IMAGELAYOUT,
DAT_IMAGEINFO

Obviously a change in orientation will have an effect on the output image dimensions, so these
must be reflected in DAT_I MAGEI NFOduring State 6. The resulting image dimensions shall be
reported by the data source after considering the effect of the rotation on the current frame.

| CAP_ORI ENTATI ON shall be reflected in returned | CAP_FRANMES and DAT _| MAGELAYOUT
when set using | CAP_SUPPORTEDSI ZES other than TWSS_NONE or TWSS_MAXSI ZE.

| CAP_ROTATI ONshall only be reflected in the returned image data of DAT_| MAGEI NFO.

| CAP_CRI ENTATI ONand | CAP_ROTATI ON are additive. The original SupportedSize is modified
by | CAP_ORI ENTATI ON as it is downloaded to the device by the Source, and represents the
orientation of the paper being scanned. | CAP_ROTATI ONis then applied to the captured image to
yield the final framing information that is reported to the Application in State 6 or 7. One possible
reason for combining these two values is to use them to cancel each other out. For instance, some
scanners with automatic document feeders may receive a performance benefit from describing an
| CAP_ORI ENTATI ON of TWOR_LANDSCAPE in combination with an | CAP_ROTATI ON of 90
degrees. This would allow the user to feed images in a landscape orientation (which lets them feed
faster), while rotating the captured images back to portrait (which is the way the user wants to
view them).

Transfer of Multiple Images

Chapter 3, "Application Implementation" discussed the transfer of a single image. Transferring
multiple images simply requires looping through the single-image transfer process repeatedly
whenever more images are available. Two classes of issues arise when considering multiple
image transfer under TWAIN:

* What state transitions are allowable when a session is at an inter-image boundary?

* What facilities are available to support the operation of a document feeder? This includes
issues related to high-performance scanning.

This section starts with a review of the single-image transfer process. This is followed by a
discussion of options available to an application once the transfer of a single image is complete.
Finally, document feeder issues are presented.

To briefly review the single-image transfer process:

* The application enables the Source and the session moves from State 4 to State 5.
* The Source sends the application a M5SG_XFERREADY when an image is ready for transfer.

e The application uses DG_| MAGE / DAT_| MACEI NFO/ MSG_GET and DG _| MACE /
DAT_| MAGELAYQUT / MSG_CET to get information about the image about to be transferred.

* Theapplication initiates the transfer using a DG_CONTRCL / DAT_| MAGEXXxxXFER / M5G_GET
operation. The transfer occurs.

* Following a successful transfer, the Source returns TWRC_XFERDONE.

4-26 TWAIN 2.4 Specification

* The application sends the DG_CONTRCOL / DAT_PENDI NGXFERS / M5G_ENDXFER operation to
acknowledge the end of the transfer and learn the number of pending transfers.

If the intent behind transferring a single image is to simply flush it from the Source (for example,
an application may want to scan only every other page from a stack placed in a scanner with a
document feeder), the following operation suffices:

* Issuea CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER operation. As with normal
image transfer, this operation tells the Source that the application has completed acquisition of
the current image, and the Source responds by reporting the number of pending transfers.

Preparing for Multiple Image Transfer

The DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER operation issued by the application at
the end of every image transfer performs two important functions:

* Itreturns a count of pending transfers (in TW PENDI NGXFERS. Count)

* It transitions the session to State 6 (Transfer Ready) if the count of pending transfers is
nonzero, or to State 5 (Source Enabled) if the count is zero. Recall that the count returned is a
positive value if the Source knows the number of images available for acquisition. If the
Source does not know the number of images available, the count returned is -1. The latter
situation can occur if, for example, a document feeder is in use. Note that not knowing the
number of images available includes the possibility that no further images are available; see
the description of DG_CONTROL / DAT_PENDI NGXFERS / M5G_ENDXFER for more on this.

We have just seen that after the MSG_ENDXFER operation is issued following an image transfer,
the session is either in State 6 or State 5; that is, the session is still very much in an active state. If
the session is in State 6 (i.e. “an image is available”), the application takes one of two actions so as
to eventually transition the session to State 5 (i.e. “Source is ready to acquire an image, though
none is available”):

* It continues to perform the single-image transfer process outlined earlier until no more images
are available, or

* Itissues a DG_CONTRCL / DAT_PENDI NGXFERS / MSG_RESET to flush all pending transfers
from the Source.

Once the session is back in State 5, the application has to decide whether to stay in State 5 or
transition down to State 4 (“Source is open, and ready for capability negotiation”.) Two scenarios
are possible here.

In one scenario, the application lets the Source control further state transitions. If the Source sends
it a M5SG_XFERREADY, the application restarts the multiple image transfer loop described above. If
the Source sends it a MSG_CLOSEDSREQ (e.g. because the user activated the “Done” trigger on the
Ul displayed by the Source), the application sends back a DG_CONTROL / DAT_USERI NTERFACE
! MBG_DI SABLEDS, thereby putting the session in State 4.

In the other scenario, the application directly controls session state transitions. For example, the
application may want to shut down the current session as soon as the current batch of images
have been transferred. In this case, the application issues a DG_CONTROL /

DAT_USERI NTERFACE / MSG_DI SABLEDS as soon as the pending transfers count reaches zero.

It should be noted that there is no “right”, “wrong” or “preferred” scenario for an application to
follow when deciding what to do once all images in the current set have been transferred. If an

TWAIN 2.4 Specification 4-27

Chapter 4

4-28

application wants to let the user control the termination of a session explicitly, it may well wait for
the Source to send it a MSG_CLOSEDSREQ. On the other hand, the application may have a strong
sense of what constitutes a session; for example, it may want to terminate a scan session as soon as
a blank page is transferred. In such a case, the application will want to control the condition under
which the MSG_DI SABLEDS is sent.

Use of a Document Feeder

The term document feeder can refer to a physical device’s automatic document feeder, such as
might be available with a scanner, or to the logical feeding ability of an image database. Both
input mechanisms apply although the following text uses the physical feeder for its discussion.
The topics covered in this section are:

* Controlling whether to scan pages from the document feeder or the platen

* Detecting whether or not paper is ready for scanning

* Controlling scan lookahead

Note that these concepts are applicable to scanners that do not have feeders; see the discussion
below for details.

Selecting the Document Feeder

Sometimes the use of a document feeder actually alters how the image is acquired. For instance, a
scanner may move its light bar over a piece of paper if the paper is placed on a platen. When a
document feeder is used, however, the same scanner might hold the light bar stable and scan the
moving paper. To prepare for such variations the application and Source can explicitly agree to
use the document feeder. The negotiation for this action must occur during State 4 before the
Source is enabled using the following capability.

CAP_FEEDERENABLED

Determine if a Source has a document feeder available and, if so, select that option.

* To determine if this capability is supported, use a DG_CONTRCL / DAT_CAPABI LI TY /
MBG_GET operation. TWRC_FAI LURE / TWCC_CAPUNSUPPORTED indicates this Source
does not have the ability to select the document feeder.

* If supported, use the DG_CONTROL / DAT_CAPABI LI TY / M5G_SET operation during
State 4.

¢ Set TW CAPABI LI TY.Cap to CAP_FEEDERENABLED.

* Create a container of type TW ONEVALUE and set it to TRUE. Reference
TW CAPABI LI TY.hCont ai ner to the container.

* Execute the M5G_SET operation and check the Return Code.

If TWRC_SUCCESS then the feeder is available and your request to use it was accepted. The
application can now set other document feeder capabilities.

If TWRC_FAI LURE and TWCC_CAPUNSUPPORTED, TWCC _CAPBADOPERATI ON, or
TWCC_BADVAL UE then this Source does not have a document feeder capability or does not allow it
to be selected explicitly.

Note: If an application wanted to prevent the user from using a feeder, the application should
use a M5G_SET operation to set the CAP_FEEDERENABLED capability to FALSE.

TWAIN 2.4 Specification

Detecting Whether an Image is Ready for Acquisition

Having an image ready for acquisition in the Source device is independent of having a selectable
document feeder. There are three possibilities here:

* The Source cannot tell whether an image is available,
* Animage is available for acquisition, or

* No image is available for acquisition

These cases can be detected by first determining whether a Source can tell that image data is
available for acquisition (case 1. vs. cases 2. and 3.) and then determining whether image data is
available (case 2. vs. case 3.)The capabilities used to do so are as follows:

CAP_PAPERDETECTABLE

First, determine if the Source can tell that documents are loaded.

e To check if a Source can detect documents, use the DG_CONTROL / DAT_CAPABI LI TY /
MBG_GET operation.

e Set the TW CAPABI LI TY.Cap field to CAP_PAPERDETECTABLE.

¢ The Source returns TWRC SUCCESS with the hCont ai ner structure’s value set to TRUE if
it can detect a loaded document that is ready for acquisition. If the result code is
TWRC_FAI LURE with TWCC_CAPUNSUPPORTED or TWCC_BADVAL UE, then the Source
cannot detect that paper is loaded.

Note: CAP_PAPERDETECTABLE can be used independently of CAP_FEEDERENABLED. Also, an
automatic document feeder need not be present for a Source to support this capability;
e.g. a scanner that can detect paper on its platen should return TRUE.

The application cannot set this capability. The Source is simply reporting on a condition.

CAP_FEEDERLCADED

Next, determine if there are documents loaded in the feeder.

* To check if pages are present, use the DG_CONTROL / DAT_CAPABI LI TY / M5G_GET
operation.

* Set the TW CAPABI LI TY.Cap field to CAP_FEEDERL OADED.

¢ The Source returns TRUE if there are documents loaded. The information is in the
container structure pointed to by the hContainer field of the TW CAPABI LI TY structure.

Note: Neither CAP_FEEDERENABLED nor CAP_PAPERDETECTABLE need be TRUE to use this
capability. A FALSE indication from this capability simply indicates that the feeder is not
loaded or that the Source’s feeder cannot tell. For a definitive answer, be sure to check
CAP_PAPERDETECTABLE.

Controlling Scan Lookahead

With low-end scanners there is usually ample time for the CPU handling the image acquisition to
process incoming image data on-the-fly or in the scan delay between pages. However, with
higher performance scanners the CPU image processing time for a given page can become a
significant fraction of the scan time. This problem can be alleviated if the scanner can scan ahead

TWAIN 2.4 Specification 4-29

Chapter 4

4-30

image data that the CPU has yet to acquire. This data can be buffered in scanner-local memory, or
stored in main memory by the Source via a DMA operation while the CPU processes the current
image.

Scan look-ahead is not always desirable, however. This is because the decision to continue a scan
may be determined by the results of previously scanned images. For example, a scanning
application may decide to stop a scan whenever it sees a blank page. If scan look-ahead were
always enabled, one or more pages past the blank page may be scanned and transferred to the
scanner’s output bin. Such behavior may be incorrect from the point of view of the application’s
design.

We have argued that the ability to control scan look-ahead is highly desirable. However, a single
“enable scan look-ahead” command is insufficient to capture the richness of function provided by
some scanners. In particular, TWAIN’s model of document feeding has each image (e.g., sheet of
paper) transition through a three stage process.

1. Image is in input bin. This action is taken by the user (for example, by placing a stack of
paper into an auto-feeder.)

2. Image is ready for scan. This action causes the next available image to be placed at the
start of the scan area. Set the CAP_AUTOFEED capability(described below)to automatically
feed images to the start of the scan area.

3. Image is scanned. This action actually causes the image to be scanned. For example, the
DG_| MAGE/DAT_| MAGEMEMXFER/MSG_GET operation initiates image transfer to an
application via buffered memory. TWAIN allows a Source to pre-fetch images into
Source-local memory (even before the application requests them) by setting the
CAP_AUTCSCAN capability.

CAP_AUTOFEED

Enable the Source’s automatic document feeding process.
* Use DG_CONTROL / DAT_CAPABI LI TY / M5G_SET.
* Set the TW CAPABI LI TY. Cap field to CAP_AUTOFEED and set the capability to TRUE.

* When set to TRUE, the behavior of the Source is to eject one page and feed the next page
after all frames on the first page are acquired. This automatic feeding process will
continue whenever there is image data ready for acquisition (and the Source is in an
enabled state). CAP_FEEDERLOADED is TRUE showing that pages are in the document
feeder.

Note: CAP_FEEDERENABLED must be set to TRUE to use this capability. If not, the Source
should return TWRC_FAI LURE / TWCC_CAPUNSUPPORTED.

CAP_AUTOSCAN

Enable the Source’s automatic document scanning process.
* Use DG_CONTROL / DAT_CAPABI LI TY / M5G_SET.
* Set the TW CAPABI LI TY. Cap field to CAP_AUTCOSCAN and set the capability to TRUE.

* When set to TRUE, the behavior of the Source is to eject one page and scan the next page
after all frames on the first page are acquired. This automatic scanning process will

TWAIN 2.4 Specification

continue whenever there is image data ready for acquisition (and the Source is in an
enabled state.

Note: Setting CAP_AUTOSCAN to TRUE implicitly sets CAP_AUTOFEED to TRUE also.
When your application uses automatic document feeding;:

* Set CAP_XFERCOUNT to -1 indicating your application can accept multiple images.

* Expect the Source to return the TW PENDI NGXFERS. Count as - 1. It indicates the Source
has more images to transfer but it is not sure how many.

* Using automatic document feeding does not change the process of transferring multiple
documents described earlier and in Chapter 3, "Application Implementation".

Control of the Document Feeding by the Application

In addition to automatic document feeding, TWAIN provides an option for an application to
manually control the feeding of documents. This is only possible if the Source agrees to negotiate
the following capabilities during States 5, 6 and 7, as indicated by CAP_EXTENDEDCAPS. If
CAP_AUTOFEED is set to TRUE, it can impact the way the Source responds to the following
capabilities as indicated below.

CAP_FEEDPAGE

* If the application sets this capability to TRUE, the Source will eject the current page (if any)
and feed the next page.

* To work as described requires that CAP_FEEDERENABL ED and CAP_FEEDERL OADED be
TRUE.

e If CAP_AUTOFEED s TRUE, the action is the still the same.

* The page ejected corresponds to the image that the application is acquiring (or is about to
acquire). Therefore, if CAP_AUTOSCANis TRUE and one or more pages have been scanned
speculatively, the page ejected may correspond to a page that has already been scanned
into Source-local buffers.

CAP_CLEARPAGE

* If the application sets this capability to TRUE, the Source will eject the current page and
leave the feeder acquire area empty (that is, with no image ready to acquire).

* To work as described, this requires that CAP_FEEDERENABLED be TRUE and there be a
paper in the feeder acquire area to begin with.

* If CAP_AUTOFEEDis TRUE, the next page will advance to the acquire area.

* If CAP_AUTOSCANis TRUE, setting this capability returns TWRC_FAI LURE with
TWCC_BADVAL UE.

CAP_REWINDPAGE

* If the application sets this capability to TRUE, the Source will return the current page to
the input area and return the last page from the output area into the acquisition area.

* To work as described requires that CAP_FEEDERENABLED be TRUE.

* If CAP_AUTOFEEDis TRUE, the normal automatic feeding will continue after all frames of
this page are acquired.

TWAIN 2.4 Specification 4-31

Chapter 4

The page rewound corresponds to the image that the application is acquiring. Therefore,
if CAP_AUTCOSCAN s TRUE and one or more pages have been scanned speculatively, the
page rewound may correspond to a page that has already been scanned into Source-local

buffers.

Transfer of Compressed Data

4-32

When using the Buffered Memory mode for transferring images, some Sources may support the
transfer of data in a compressed format.

To determine if a Source supports transfer of compressed data and to set the capability

1. Usethe DG_CONTROL / DAT_CAPABI LI TY / MSG_GET operation.

2. Set the TW CAPABI LI TY. Cap field to | CAP_COVPRESSI ON.

3. The Source returns information about the compression schemes they support in the
container structure pointed to by the hCont ai ner field of TW CAPABI LI TY. The
identifiers for the compression alternatives all begin with TWCP_, such as
TWCP_PACKBI TS, and can be seen in the Constants section of Chapter 8, "Data Types and
Data Structures" and in the TWAI N. Hfile.

4. 1If you wish to negotiate for the transfer to use one of the compression schemes shown, use
the DG_CONTRCL / DAT_CAPABI LI TY / MSG_SET operation.

The TW_ | MAGEMEMXFER structure is used with the DG _| MAGE / DAT_| MAGEMEMXFER / MSG_GET
operation. The structure looks like this:

typedef struct {

TW UI NT16 Conpression; /* A TWCP_xxxx constant */
TW.UI NT32 Byt esPer Row,

TW Ul NT32 Col ums;

TW U NT32 Rows;

TWUI NT32 XOfset;

TW Ul NT32 YO fset;

TW U NT32 BytesWitten;

TW MEMORY Menory;

} TW.I| MAGEMEMXFER FAR *pTW | MAGEVEMXFER;

When compressed strips of data are transferred:

The Byt esPer Rowfield will be set to 0. The Col umms, Rows, XOf f set , and YO f set fields
will contain TWON_DONTCARE3?2 indicating the fields hold invalid values. (The original image
height and width are available by using the DG_| MAGE / DAT_I MAGEI NFO/ MSG_GET
operation during State 6 prior to the transfer.)

Transfer buffers are always completely filled by the Source. For compressed data, it is very
likely that at least one partial line will be written into the buffer.

The application is responsible for deallocating the buffers.

TWAIN 2.4 Specification

When compressed, tiled data are transferred:

e All fields in the structure contain valid data. Byt esPer Row, Col utms, Rows, XOF f set , and
YO f set all describe the uncompressed tile. Conpr essi on and Byt esW i t t en describe
the compressed tile.

* In this case, unlike with compressed, strip data transfer, the Source allocates the transfer
buffers. This allows the Source to create buffers of differing sizes so that complete,
compressed tiles can be transferred to the application intact (not split between sequential
buffers). Under these conditions, the application should set the fields of the TW MEMORY
structure so Flags is TWWF_DSOWNS, Length is TWON_DONTCARE32 and TheMem is NULL. The
Source must assume that the application will keep the previous buffer rather than releasing it.
Therefore, the Source must allocate a new buffer for each transfer.

* The application is responsible for deallocating the buffers.

* Finally, the application cannot assume that the tiles will be transferred in any particular,
logical order.

JPEG Compression

TWAIN supports transfer of several forms of compressed data. JPEG compression is one of them.
The JPEG compression algorithm provides compression ratios in the range of 10:1 to 25:1 for
grayscale and full-color images, often without causing visible loss of image quality. This
compression, which is created by the application of a series of “perceptual” filters, is achieved in
three stages:

Color Space Transformation and Component Subsampling
(Color Images Only, Not for Grayscale)

The human eye is far more sensitive to light intensity (luminance) than it is to light frequency
(chrominance, or “color”) since it has, on average, 100 million detectors for brightness (the “rods”)
but only about 6 million detectors for color (the “cones”). Substantial image compression can be
achieved simply by converting a color image into a more efficient luminance/chrominance color
space and then subsampling the chrominance components.

This conversion is provided for by the TW JPEGCOMPRESSI ON structure. By specifying the
TW JPEGCOMPRESSI ON. Col or Space = TWPT_YWV, Source RGB data is converted into more
space-efficient YUV data (better known as CCIR 601-1 or YCbCr).

TW JPEGCOVPRESSI ON.SubSanpl i ng specifies the ratio of luminance to chrominance samples
in the resulting YUV data stream, and a typical choice calls for two luminance samples for every
chrominance sample. This type of subsampling is specified by entering 0x21102110 into the
TW JPEGCOVPRESSI ON. SubSanpl i ng field. A larger ratio of four luminance samples for every
chrominance sample is represented by 0x41104110. To sample two luminance values for every
chrominance sample in both the horizontal and vertical axes, use a value of 0x21102110.

Application of the Discrete Cosine Transform (DCT) and Quantization

The original components (with or without color space conversion) are next mathematically
converted into a spatial frequency representation using the DCT and then filtered with
quantization matrices (each frequency component is divided by its corresponding member in a
quantization matrix). The quantization matrices are specified by

TW JPEGCOVPRESSI ON. Quant Table[] and up to four quantization matrices may be defined for
up to four different original components. TW JPEGCOMPRESSI ON.Quant Map[] maps the
particular original component to its respective quantization matrix.

TWAIN 2.4 Specification 4-33

Chapter 4

4-34

Note: Suggested defaults for the quantization map and tables are in Section K of the JPEG Draft
International Standard, version 10918-1. These defaults are used in the tables for
QuantTable, HuffmanDC, and HuffmanAC by TWAIN. The default tables are selected by
putting NULL into each of the TW JPEGCOVPRESSI ON. Quant Tabl e[] entries.

Huffman encoding

The resulting coefficients from the DCT and quantization steps are further compressed in one final
stage using a loss-less compression algorithm called Huffman encoding. Application developers
can provide Huffman tables, though typically the default tables —selected by writing NULL into
TW JPEGCOMPRESSI ON. Huf f manDC]] and TW JPEGCOMPRESSI ON. Huf f manAC[] — yield
very good results.

The algorithm optionally supports the use of restart marker codes. The purpose of these markers
is to allow random access to strips of compressed data in a JPEG data stream. They are more fully
described in the JPEG specification.

See Chapter 8, "Data Types and Data Structures" for the definition of the TW JPEGCOVMPRESSI ON
data structure. Example data structures are shown below for RGB image compression and

grayscale image compression:

/* RGB i nage conpression - YU conversion and 2:1:1 chroni nance */

/* subsanpling */

t ypedef struct TW JPEGCOWPRESSI ON nyJPEG

nyJPEG. Col or Space = TWPT_YUV; /'l convert RGBto YW

nmy JPEG. SubSanpl i ng = 0x21102110; /[l 2 Y for each U, V

nmy JPEG. NunConponent s = 3; /1Y, U V

nyJPEG. Rest art Frequency = O; /1l No restart narkers

ny JPEG. Quant Map][0] = 0; /1 Y conponent uses tabl el

ny JPEG. Quant Map|[1] = 1; /1 U conmponent uses table 1

ny JPEG. Quant Map][2] = 1; /1 V conmponent uses table 1

nmy JPEG. Quant Tabl e[0] = NULL; /'l select defaults for quant

/1 tables

nmyJPEG. Quant Tabl e[1] = NULL; /1

nmyJPEG. Quant Tabl e[2] = NULL; /1

nmy JPEG. Huf f manMap| 0] = 0; /1 Y conponent uses DC & AC
/] table O

nmy JPEG. Huf f manMap|[1] = 1; /1 U conponent uses DC & AC
/] table 1

nmy JPEG. Huf f manMap| 2] = 1; /1 V conponent uses DC & AC
/] table 1

nmy JPEG. Huf f manDC[0] = NULL; /1 select default for Huffman
/1 tables

nyJPEG Huf f manDC] 1] = NULL; 11

nmy JPEG. Huf f manAC[0] = NULL; /1

nyJPEG Huf f manAC] 1] = NULL; /1

/* Grayscal e i mage conpressi on - no col or space conversion or */

/* subsanpling */

t ypedef struct TW JPEGCOWPRESSI ON nyJPEG

nmyJPEG. Col or Space = TWPT_GRAY; /1 Grayscal e data

nmyJPEG. SubSanpl i ng = 0x10001000; /1 no chrom nance components
ny JPEG. NunConponent s = 1; /'l Grayscal e

nmyJPEG. Rest art Frequency = O; /1l No restart narkers

TWAIN 2.4 Specification

myJPEG. Quant Map[0] = 0; /'l select default for quant
/'l map

myJPEG. Quant Tabl e[0] = NULL,; /1

my JPEG. Huf f manMap[0] = 0; /1 select default for Huffrman
/1 tables

nyJPEG. Huf f manDC] 0] = NULL; /1

nyJPEG. Huf f manAC 0] = NULL; /1

The resulting compressed images from these examples will be compatible with the JPEG File
Interchange Format (JFIF version 1.1) and will therefore be usable by a variety of applications that
are JFIF-aware.

Alternative User Interfaces

Alternatives to Using the Source Manager’s Select Source Dialog

TWAIN ships its Source Manager code to act as the communication vehicle between application
and Source. One of the services the Source Manager provides is locating all available Sources that
meet the application’s requirements and presenting those to the user for selection.

It is recommended that the application use this approach. However, the application is not
required to use this service. Two alternatives exist:

The application can develop and present its own custom selection interface to the user. This is
presented in response to the user choosing Select Source... from its menu.

Or, if the application is dedicated to control of a specific Source, the application can
transparently select the Source. In this case, the application does not functionally need to have
a Select Source... option in the menu but a grayed-out one should be displayed for consistency
with all other TWAIN-compliant applications.

Displaying a custom selection interface:

TWAIN 2.4 Specification

1. Usethe DG_CONTROL / DAT_I DENTI TY / MSG_GETFI RST operation to have the Source
Manager locate the first Source available. The name of the Source is contained in the
TW. I DENTI TY. Pr oduct Nane field. Save the TW | DENTI TY structure.

2. Use the DG_CONTROL / DAT_I DENTI TY / MSG_GETNEXT to have the Source Manager
locate the next Source. Repeatedly use this operation until it returns TWRC_ENDOFLI ST
indicating no more Sources are available. Save the TW | DENTI TY structure.

3. Use the Pr oduct Name information to display the choices to the user. Once they have
made their selection, use the saved TW_ | DENTI TY structure and the DG_CONTROL /
DAT_I DENTI TY / MSG_OPENDS operation to have the Source Manager open the desired
Source. (Note, using this approach, as opposed to the M5SG_USERSELECT operation, the
Source Manager does not update the system default Source information to reflect your
choice.)

4. Usethe DG_CONTROL / DAT_I DENTI TY / MSG_SET to set the system default source.

4-35

Chapter 4

4-36

Transparently selecting a Source:

If the application wants to open the system default Source , use the DG_CONTRCL /

DAT_I DENTI TY / MSG_GETDEFAULT operation to have the Source Manager locate the default
Source and fill the TW | DENTI TY structure with information about it. The name of the Source
is contained in the TW | DENTI TY. Pr oduct Nane field. Save the TW | DENTI TY structure.

OR

If you know the Pr oduct Nanme of the Source you wish to use and it is not the system default
Source, use the DG_CONTRCL / DAT_I DENTI TY / MSG_GETFI RST and DG_CONTRCL /
DAT_I DENTI TY / MSG_GETNEXT operations to have the Source Manager locate each Source.
You must continue looking at Sources until you verify that the desired Source is available.
Save the TW_ | DENTI TY structure when you locate the Source you want. If the Return Code
TWRC_ENDOFLI ST appears before the desired Source is located, it is not available.

Use the saved TW_|I DENTI TY structure and the DG_CONTRCL / DAT_I| DENTI TY /
MBG_OPENDS operation to have the Source Manager open the desired Source. (Note, using
this approach, rather than MSG_USERSELECT, the Source Manager does not update the
system default Source information to reflect your choice.)

Alternatives to Using the Source’s User Interface

Just as with the Source Manager’s Select Source dialog, the application may ask to not use the
Source’s user interface. Certain types of applications may not want to have the Source’s user
interface displayed. An example of this can be seen in some text recognition packages that wish to
negotiate a few capabilities (i.e. pixel type, resolution, page size) and then proceed directly to
acquiring and transferring the data.

Some Sources may display the Ul even when ShowUl is set to FALSE. An application can
determine whether ShowUl can be set by interrogating the CAP_Ul CONTROLLABLE capability. If
CAP_UI CONTROLLABLE returns FALSE but the ShowUl input value is set to FALSE in an
activation of DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS, the enable DS
operation returns TWRC_CHECKSTATUS but displays the Ul regardless. Therefore, an application
that requires that the UI be disabled should interrogate CAP_UI CONTRCOLLABLE before issuing
MSG_ENABLEDS.

To enable the Source without displaying its user interface:

e Use the DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS operation.
¢ Set the ShowUl field of the TW USERI NTERFACE structure to FALSE.

* When the command is received and accepted (TVWRC_SUCCESS), the Source does not display a
user interface but is armed to begin capturing data. For example, in a flatbed scanner, the
light bar will light and begin to move. A handheld scanner will be armed and ready to
acquire data when the “go” button is pressed on the scanner. Other devices may respond
differently but they all will either begin acquisition immediately or be armed to begin
acquiring data as soon as the user interacts with the device.

Capability negotiation is essential when the Source’s user interface is not displayed:

* Since the Source’s user interface is not displayed, the Source will not be giving the user the
opportunity to select the information to be acquired, etc. Unless default values are acceptable,
current values for all image acquisition and control parameters must be negotiated before the
Source is enabled, i.e. while the session is in State 4.

TWAIN 2.4 Specification

When TW USERI NTERFACE.ShowUl is set to FALSE:

A Source that does not support Showll set to FALSE will return TWRC_CHECKSTATUS and
display the Ul regardless.

The application is still required to pass all events to the Source (via the DG_CONTRCL /
DAT_EVENT / M5G_PROCESSEVENT operation) while the Source is enabled.

The Source must display the minimum possible user interface containing only those controls
required to make the device useful in context. In general, this means that no user interface is
displayed, however certain devices may still require a trigger to initiate the scan.

If the Source user interface is not displayed, and the Application sets CAP_| NDI CATORS to
TRUE, then the Source displays a progress indicator during acquisition and transfer, and an
error can result in the Source showing a dialog to the user.

If the Source user interface is not displayed, and the Application sets CAP_| NDI CATORS to
FALSE, then the Source is not allowed to display any kind of user interface, progress indicator
or error dialog. All Ul activity must be suppressed.

If the Source user interface is displayed then the Source will ignore the setting for
CAP_I NDI CATORS. A progress indicator is displayed during acquisition and transfer, and
errors can result in the Source showing a dialog to the user.

The Source still sends the application a MBG_XFERREADY notice when the data is ready to be
transferred.

The Source may or may not send a M5SG_CLOSEDSREQto the application asking to be closed
since this is often user-initiated. Therefore, after the Source has returned to State 5 (following
the DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER operation and the

TW PENDI NGXFERS.Count = 0), the application can send the DG_CONTRCL /

DAT_USERI NTERFACE / M5G_DI SABLEDS operation.

Modal Versus Modeless User Interfaces

The Source Manager’s user interface is a modal interface but the Source may provide a modeless
or modal interface. Here are the differences:

Modeless

When a Source uses a modeless user interface, although the Source’s interface is displayed,
the user is still able to access the application by clicking on the application’s window and
making it active.

The user is expected to click on a Close button on the Source’s user interface when they are
ready for that display to go away. The application must NOT automatically close a modeless
Source after the first (or any subsequent) transfer, even if the application is only interested in
receiving a single transfer. If the application closes the Source before the user requests it, the
user is likely to become confused about why the window disappeared. Wait until the user
indicates the desire to close the Source’s window and the Source sends this request
(M5G_CLGOSEDSREQ) to the application before closing the Source.

Modal

TWAIN 2.4 Specification

A Source using a modal user interface prevents the user from accessing other windows.

For Windows only, if the interface is application modal, the user cannot access other
applications but can still access system utilities. If the interface is system modal (which is
rare), the user cannot access anything else at an application or system level. A system modal

4-37

Chapter 4

dialog might be used to display a serious error message, like a UAE (Unrecoverable
Application Error).

If using a modal interface, the Source can perform only one acquire during a session although
there may be multiple frames per acquisition. The Source will send a close request to the
application following the completion of the data transfer. Again, the application waits to
receive this request.

The Source indicates if it is using a modeless or modal interface after the application enables it
using the DG_CONTROL / DAT_USERI NTERFACE / M5SG_ENABLEDS operation. The data structure
used in the operation (TW USERI NTERFACE) contains a field, ShowUl , which is set by the
application to indicate whether the Source should display its user interface. If the application
requests the user interface be shown, it may also set the Modal Ul field to indicate if it wishes the
Source’s GUI to run modal (TRUE) or modeless (FALSE).

When requested by the Source, the application uses the DG_CONTRCL / DAT_USERI NTERFACE /
MSG_DI SABLEDS operation to remove the Source’s user interface.

Grayscale and Color Information for an Image

There are operation triplets in TWAIN that allow the application developer to interact with and
influence the grayscale or color aspect of the images that a Source transfers to the application. The
following operations provide these abilities:

* CIE Color Descriptors
DG _| MAGE / DAT_CI ECOLOR / MSG_GET

* Grayscale Changes
DG _| MAGE / DAT_GRAYRESPONSE / M5G_RESET
DG_| MAGE / DAT_GRAYRESPONSE / M5G_SET

* Palette Color Data
DG_| MAGE / DAT_PALETTES / MSG_GET
DG | MAGE / DAT_PALETTES / MBG_GETDEFAULT
DG_| MAGE / DAT_PALETTES / M5G_RESET
DG_| MAGE / DAT_PALETTES / MSG_SET

* RGB Response Curve Data
DG_| MAGE / DAT_RGBRESPONSE / M5G_RESET
DG_| MAGE / DAT_RGBRESPONSE / M5G_RESET

CIE Color Descriptors

The CIE XYZ approach is a method for storing color data which simplifies doing mathematical
manipulations on the data. Go to http://www.cie.co.at/ for more information about CIE XYZ
Color Space.

If your application wishes to receive the image data in this format:

4-38 TWAIN 2.4 Specification

1. You must ensure that the Source is able to provide data in CIE XYZ format. To check this, use
the DG_CONTRCL / DAT_CAPABI LI TY / MSG_GCET operation and get information on the
| CAP_PI XELTYPE. If TWPT_CI EXYZ is returned as one of the supported types, the Source
can provide data in CIE XYZ format.

2. After verifying that the Source supports it, the application can specify that data transfers
should use the CIE XYZ format by invoking a DG_CONTROL / DAT_CAPABI LI TY / M5G_SET
operation on the | CAP_PI XELTYPE. Use a TW ONEVALUE container whose value is
TWPT_CI EXYZ.

To determine the parameters that were used by the Source in converting the color data into the
CIE XYZ format, use the DG_| MAGE / DAT_Cl ECOLOR / M5G_GET operation following the
transfer of the image.

Grayscale Changes

(The grayscale operations assume that the application has instructed the Source to provide
grayscale data by setting its | CAP_PI XELTYPE to TWPT_GRAY and the Source is capable of this.)

The application can request that the Source apply a transfer curve to its grayscale data prior to
transferring the data to the application. To do this, the application uses the DG _| MAGE /
DAT_CGRAYRESPONSE / MSG_SET operation. The desired transfer curve information is placed by
the application within the TW GRAYRESPONSE structure (the actual array is of type

TW ELEMENTS). The application must be certain to check the Return Code following this request.
If the Return Code is TWRC_FAIl LURE and the Condition Code shows TWCC BADPROTOCOL, this
indicates the Source does not support grayscale response curves (despite supporting grayscale
data).

If the Source allows the application to set the grayscale transfer curve, there must be a way to reset
the curve to its original non-altered value. Therefore, the Source must have an “identity response
curve” which does not alter grayscale data but transfers it exactly as acquired. When the
application sends the DG _| MAGE / DAT_GRAYRESPONSE / MSG_RESET operation, the Source
resets the grayscale response curve to its identity response curve.

Palette Color Data

(The palette8 operations assume that the application has instructed the Source to use the
TWPT_PALETTE type for its | CAP_PI XELTYPE and that the Source has accepted this.)

The DAT_PALETTES operations allow the application to inquire about a Source’s support for
palette color data and to set up a palette color transfer. The operations are specialized for 8-bit
data, whether grayscale or color (8-bit or 24-bit). The M5G_GET operation allows the application to
learn what palette was used by the Source during the image acquisition. The application should
always execute this operation immediately after an image transfer rather than before because the
Source may optimize the palette during the acquisition process. Some Sources may allow an
application to define the palette to be used during image acquisition via the M5G_SET operation.
Be sure to check the Return Code to verify that it is TWRC _SUCCESS following a M5G_SET
operation. That is the only way to be certain that your requested palette will actually be used
during subsequent palette transfers.

TWAIN 2.4 Specification 4-39

Chapter 4

4-40

RGB Response Curve Data

(The RGB Response curve operations assume that the application has instructed the Source to
provide RGB data by setting its | CAP_PI XELTYPE to TWPT_RGB and the Source is capable of
this.)

The application can request that the Source apply a transfer curve to its RGB data prior to
transferring the data to the application. To do this, the application uses the DG_I MAGE /
DAT_RGBRESPONSE / MSG_SET operation. The desired transfer curve information is placed by
the application within the TW RGBRESPONSE structure (the actual array is of type TW ELEMENTS).
The application must be certain to check the Return Code following this request. If the Return
Code is TWRC_FAI LURE and the Condition Code shows TWCC_BADPROTOCOL, this indicates the
Source does not support RGB response curves (despite supporting RGB data).

If the Source allows the application to set the RGB response curve, there must be a way to reset the
curve to its original non-altered value. Therefore, the Source must have an “identity response
curve” which does not alter RGB data but transfers it exactly as acquired. When the application
sends the DG | MAGE / DAT_RGBRESPONSE / MSG_RESET operation, the Source resets the RGB
response curve to its identity response curve.

TWAIN 2.4 Specification

Source Implementation

Chapter Contents

The Structure of aSource. 5-1
Operation Triplets e 5-2
Sources and the Event Loop. o e 5-3
User Interface Guidelines. 5-4
Capability Negotiation e 5-6
Data Transfers 5-8
Error Handling. oo 5-11
Memory Management. 5-12
Requirements for a Source to be TWAIN-Compliant 5-13
Other TOPICS. . ..o oo 5-21

Companies that produce image-acquisition devices, and wish to gain the benefits of being
TWAIN-compliant, must develop TWAIN-compliant Source software to drive their device. The
Source software is the interface between TWAIN's Source Manager and the company’s physical
(or logical) device. To write effective Source software, the developer must be familiar with the
application’s expectations as discussed in the other chapters of this document.

The Structure of a Source

The following sections describe the structure of a source. Also see Chapter 12, "Operating System
Dependencies'.

Implementation

The Source is implemented as a Shared Library (DLL on Windows). The Source will not run
stand-alone.

Naming and Location

TWAIN data sources’ file name must end with a .DS extension. The Source Manager recursively
searches for all Sources in the TWAIN sub-directory. To reduce the chance for naming collisions,

TWAIN 2.4 Specification 5-1

Chapter 5

each Source should create a sub-directory beneath TWAIN, giving it a name relevant to their
product.

Entry Points

* Every Source is required to have a single entry point called DS_Ent r y (see Chapter 6, "Entry
Points and Triplet Components"). The source should be able to quickly respond to the
DG _CONTROL / DAT_I DENTITY / MSG_CET operation.

Resources

* Icon Id - All future versions of the TWAIN Source Manager may display the list of available
Sources using a combination of the Pr oduct Nane (in the Source’s TW | DENTI TY structure)
and an Icon (as the Macintosh version currently does). Therefore, it is recommended that you
add this icon into your Source resource file today. This will allow your Source to be
immediately compatible with any upcoming changes. The icon should be identified using
TWON_| CONI D from the TWAI N. Hfile.

Operation Triplets

5-2

In Chapter 3, "Application Implementation", we introduced all of the triplets that an application
can send to the Source Manager or ultimately to a Source. There are several other triplet
operations which do not originate from the application. Instead, they originate from the Source
Manager or Source and are introduced in this chapter. All defined operation triplets are listed in
detail in Chapter 7, "Operation Triplets".

Triplets from the Source Manager to the Source

There are three operation triplets that are originated by the Source Manager. They are:

DG_CONTROL / DAT_IDENTITY

MBG_GET Returns the Source’s identity structure
MBG_OPENDS Opens and initializes the Source
MSG_CLOSEDS Closes and unloads the Source

The DG_CONTROL / DAT_I DENTITY / MSG_GET operation is used by the Source Manager to
identify available Sources. It may send this operation to the Source at any time and the Source
must be prepared to respond informatively to it. That means, the Source must be able to return its
identity structure before being opened by the Source Manager (with the MSG_OPENDS command).
The Source’s initially loaded code segment must be able to perform this function without loading
any additional code segments. This allows quick identification of all available Sources and is the
only operation a Source must support before it is formally opened.

The TW_| DENTI TY structure looks like this:

typedef struct {
TW Ul NT32 | d;
TW VERSI ON Ver si on;

TWAIN 2.4 Specification

TW UI NT16 Pr ot ocol Maj or;

TW UI NT16 Pr ot ocol M nor;
TW Ul NT32 Support edG oups;
TW STR32 Manuf act urer;

TW STR32 Product Fam | y;
TW STR32 Pr oduct Nane;

} TW.IDENTITY, FAR *pTW. | DENTI TY;

The Pr oduct Nane field in the Source’s TW | DENTI TY structure should uniquely identify the
Source. This string will be placed in the Source Manager’s Select Source... dialog for the user.
(The file name of the Source should also approximate the Pr oduct Nane, if possible, to add clarity
for the user at installation time.) Fill in all fields except the Id field which will be assigned by the
Source Manager. The unique Id number that identifies your Source during its current session will
be passed to your Source when it is opened by the M5SG_OPENDS operation. Sources on Windows
must save this TW | DENTI TY. | d information for use when sending notifications from the Source
to the application.

Sources and the Event Loop

Handling Events

See Chapter 12, "Operating System Dependencies" on how to implement the Event Loop.

Communicating to the Application

As explained in Chapter 3, "Application Implementation", there are four instances where the
Source must originate and transmit a notice to the application:

TWAIN 2.4 Specification

When it has data ready to transfer (M5G_XFERREADY)

The Source must send this message when the user clicks the “GO” button on the Source’s user
interface or when the application sends a DG_CONTROL / DAT_USERI NTERFACE /
MBG_ENABLEDS operation with ShowUl = FALSE. The Source will transition from State 5 to
State 6. The application should now perform their inquiries regarding TW | MAGEI NFOand
capabilities. Then, the application issues a DG_| MAGE / DAT_| MAGEXXxXXFER / MSG_GET
operation to begin the transfer process. Typically, though it is not required, it is at this time
that a flatbed scanner (for example) will begin simultaneously to acquire and transfer the data
using the specified transfer mode.

When it needs to have its user interface disabled (M5G_CLOSEDSREQ)

Typically, the Source will send this only when the user clicks on the CLOSE button on the
Source’s user interface or when an error occurs which is serious enough to require terminating
the session with the application. The Source should be in (or transition to) State 5. The
application should respond by sending a DG_CONTROL / DAT_USERI NTERFACE /

MSG_DI SABLEDS operation to transition the session back to State 4.

5-3

Chapter 5

When the user has pressed the OK button (MSG_CLOSEDSOK)

When the user has pressed the OK button in a Source’s dialog that was brought up with
DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDSUI ONLY.

Applications should use this event as the indicator that the user has set all the desired
attributes from the Source’s GUIL.

When the Source needs to report a Device Event.

Note that the application must explicitly request the Source to supply Device Events
(M5G_DEVI CEEVENT). Sources must only provide those Device Events requested by a Source
through the CAP_DEVI CEEVENT capability. The default for this capability when the Source
starts up is an empty TW ARRAY, indicating that no Device Events are being reported.
Applications that turn on Device Events must issue a DG_CONTRCL / DAT_DEVI CEEVENT /
MBG_GET command as soon as possible after receiving a Device Event.

The Source creates a call to DSM _Ent r y (the entry point in the Source Manager) and fills the
destination with the TW | DENTI TY structure of the application. The Source uses one of the
following triplets:

DG _CONTROL / DAT_NULL / MSG_XFERREADY
DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG _CONTROL / DAT_NULL / MSG_CLOSEDSOK

The Source Manager recognizes the notice and makes sure the message is received correctly
by the application.

On Macintosh legacy 1.x sources refer to the TWAIN 1.9 Specification.

User Interface Guidelines

5-4

Each TWAIN-compliant Source provides a user interface to assist the user in acquiring data from
their device. Although each device has its own unique needs, the following guidelines are
provided to increase consistency among TWAIN-compliant devices.

Displaying the User Interface

The application issues DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS to transition
the session from State 4 to 5.

The TW USERI NTERFACE data structure contains these fields:

ShowUl - If set to TRUE, the Source displays its user interface.
If FALSE, the application will be providing its own.

hPar ent - Used by Sources on Windows only. It indicates the application’s window handle.
This is to be designated as the Source’s parent for the dialog so it is a proper child of its parent
application.

Mbdal Ul - To be set by the Application to TRUE or FALSE.

Sources are not required to allow themselves to be enabled without showing their user interface
(ShowUl = FALSE) but it is strongly recommended that they allow this. If your Source cannot be

TWAIN 2.4 Specification

used without its user interface, it should enable showing the user interface (just as if

ShowUl = TRUE) and return TWRC_CHECKSTATUS. All Sources, however, must report whether or
not they honor ShowlUl set to FALSE via the CAP_UI CONTROLLABLE capability. This allows
applications to know whether the Source-supplied user interface can be suppressed before it is
displayed.

User Interface

Sources that report TRUE for CAP_UI CONTROLLABLE must allow acquisition with the Ul disabled,
and they must support TRUE and FALSE for CAP_| NDI CATORS.

If the Application sets ShowUl to TRUE when calling M5SG_ENABLEDS, then the Source displays its
user interface. CAP_I NDI CATORS is ignored. A progress indicator is displayed during
acquisition and transfer, and errors can result in the Source showing a dialog to the user.

If the Application sets ShowUl to FALSE, but CAP_I NDI CATCRS to TRUE when calling
MSG_ENABLEDS, then the Source does not display its user interface. But a progress indicator is
still displayed during acquisition and transfer, and an error can result in the Source showing a
dialog to the user.

If the Application sets ShowUl to FALSE and CAP_| NDI CATORS to FALSE when calling
MSG_ENABLEDS, then the Source is not allowed to display any kind of user interface, progress
indicator or error dialog. All Ul activity must be suppressed.

When the user interface is disabled (by DG_CONTROL / DAT_USERI NTERFACE /
MSG_DI SABLEDS), a pointer to a TW USERI NTERFACE is included in the pDat a parameter.

Modal versus Modeless Interfaces

As stated in Chapter 4, "Advanced Application Implementation", the Source’s user interface may
be modal or modeless. The modeless approach gives the user more control and is recommended
whenever practical. Refer to Chapter 12, "Operating System Dependencies" about
implementation.

Error and Device Control Indicators

The Source knows what is happening with the device it controls. Therefore, the Source is
responsible for determining when and what information regarding errors and device controls (ex.
"place paper in document feeder") should be presented to the user. Error information should be
placed by the Source on top of either the application's or Source's user interface. Do not present
error messages regarding capability negotiation to the user since this should be transparent.

Error messages are suppressed when the Ul is not displayed and CAP_| NDI CATORS is set to
FALSE.

Progress Indicators

* If the Source user interface is not displayed, and the Application sets CAP_| NDI CATORS to
TRUE, then the Source displays a progress indicator during acquisition and transfer, and an
error can result in the Source showing a dialog to the user.

* If the Source user interface is not displayed, and the Application sets CAP_| NDI CATORS to
FALSE, then the Source is not allowed to display any kind of user interface, progress indicator
or error dialog. All Ul activity must be suppressed.

TWAIN 2.4 Specification 5-5

Chapter 5

* If the Source user interface is displayed then the Source will ignore the setting for
CAP_| NDI CATORS. A progress indicator is displayed during acquisition and transfer, and
errors can result in the Source showing a dialog to the user.

Impact of Capability Negotiation

If the Source has agreed to limit the Available Values and/or to set the Current Value, the
interface should reflect the negotiation. However, if a capability has not been negotiated by the
application, the interface should not be modified (don’t gray out a control because it wasn't
negotiated.)

Advanced Topics

If a Source can acquire from more than one device, the Source should allow the user to choose
which device they wish to acquire from. Provide the user with a selection dialog that is similar to
the one presented by the Source Manager’s Sel ect Sour ce. .. dialog.

Capability Negotiation

5-6

Capability negotiation is a critical area for a Source because it allows the application to understand
and influence the images that it receives from your Source.

Inquiries From the Application

While the Source is open but not yet enabled (from DG_CONTRCL / DAT_I DENTI TY /
MSG_OPENDS until DG_CONTRCL / DAT_USERI NTERFACE / MSG_ENABLEDS), the application
can inquire the values of all supported capabilities, and request to set those values.

Once the Source is enabled, the application may only inquire about capabilities. An attempt to set
a capability fails with TWRC_FAI LURE / TWCC_SEQERROR, unless allowed by the
CAP_EXTENDEDCAPS capability.

Responding to Inquiries

Sources must be able to respond to capability inquiries with current values at any time the Source
is open (i.e. from MSG_OPENDS until MSG_CLOSEDS or before posting a MSG_CL OSEDSREQ).

A Source should respond with information to any capability that applies to your device. Only if a
capability has no match with your device’s features should you respond with TWRC_FAI LURE /
TWCC_CAPUNSUPPORTED.

Refer to Chapter 10, "Capabilities" for the complete list of TWAIN-defined capabilities.

Responding to Requests to Set Capabilities

If the requested value is invalid or the Source does not support the capability, then return
TWRC_FAI LURE / TWCC_CAPUNSUPPCRTED. If the requested operation (MSG_SET, MSG_RESET,
etc.) is not supported, then return TWRC_FAI LURE / TWCC_CAPBADOPERATI ON. If the capability
is unavailable because of a dependency on another capability (i.e., | CAP_CCl TTKFACTOR s not

TWAIN 2.4 Specification

available unless | CAP_COVPRESSI ONis TWCP_GROUP32D), then return TWCC_CAPSEQERROR
Returning these condition codes makes it possible for an application using its own UI to
intelligently make dependent capabilities available or unavailable for user access.

If the request was fulfilled, return TWRC_SUCCESS.

If the requested value is close to an acceptable value but doesn’t match exactly, set it as closely as
possible and then return TWRC_CHECKSTATUS.

A Source supports MSG_SET operations using the same containers it returns through M5G_GET,
MBG_GETCURRENT and MSG_GETDEFAULT operations.

* Example #1, a call to DG CONTROL / DAT_CAPABI LI TY / MSG_GET returns a
TW ENUMERATI ON container. The application changes the Cur r ent | ndex and uses
DG _CONTROL / DAT_CAPABI LI TY / MSG_SET to update the capability.

* Example #2, a call to DG_CONTROL / DAT_CAPABI LI TY / MSG_GET returns a TW RANGE
container. The application changes the CurrentValue and uses DG_CONTROL /
DAT_CAPABI LI TY / MSG_SET to update the capability.

This does not imply or require support for constraining capabilities, the Source is only obligated to
update the current value of the capability. If the Source does not support constraints for a
capability, and the constraining values have been changed by the application, then the Source
should apply the current value according to its own constraints, and if that value is valid, return
TWRC_CHECKSTATUS to alert that application that it needs to do a M5SG_CET to validate its
changes.

* Example #3, if a Source supports the following range for | CAP_BRI GHTNESS: -1000. O to -
1000. 0 in steps of 20. 0, and if the current value is 0. O, then a call to DG_CONTROL /
DAT_CAPABI LI TY / MSG_CET results in the following;:
tw ange. | t emlype = TWI'Y_FI X32

tw ange. M nVal ue = -1000.0
t w ange. MaxVal ue = 1000.0
tw ange. St epSi ze = 20.0
tw ange. Def aul t Val ue = 0.0

tw ange. Current Value = 0.0

If the application sets t wr ange. Cur r ent Val ue to 900.0 and sends this structure to the
Source using DG_CONTRCOL / DAT_CAPABI LI TY / MSG_SET, the call succeeds and returns
TWRC_SUCCESS.

If the application sets both t wr ange. Cur r ent Val ue and t wr ange. MaxVal ue to 900. 0O,
then the status return depends on the Source. A Source that supports constraints accepts the
new value and limits MaxVal ue to 900. 0. A Source that does not support constraints accepts
the value 900. O, because it falls in the range of - 1000 to 1000, step 20; but it returns
TWRC_CHECKSTATUS because it was unable to accept the request to limit MaxVal ue to

900. 0.

Memory Allocation

The TW CAPABI LI TY structure used in capability negotiation is both allocated and deallocated by
the application. The Container structure pointed to by the hCont ai ner field in TW CAPABI LI TY
is allocated by the Source for “get” operations (MSG_GET, MSG_GETCURRENT, M5G_GETDEFAULT,
MSG_RESET) and by the application for the MSG_SET operation. Regardless of which one
allocates the container, the application is responsible for deallocating it when it is done with it.

TWAIN 2.4 Specification 5-7

Chapter 5

Limitations Imposed by the Negotiation

If a Source agrees to allow an application to restrict a capability, it is critical that the Source abide
by that agreement. If at all possible, the Source’s user interface should reflect the agreement and
not offer invalid options. The Source should never transfer data that violates the agreement
reached during capability negotiation. In that situation, the Source can decide to fail the transfer or
somehow adjust the values.

Data Transfers

5-8

Transfer Modes

All Sources must support Native and Buffered Memory data transfers. It is strongly suggested
that they support Disk File mode, too. The default mode is Native. To select one of the other
modes, the application must negotiate the | CAP_XFERMECH capability (whose default is
TWEX_NATI VE). Sources must support negotiation of this capability. Refer to Chapter 12,
"Operating System Dependencies" for information on each Operating System.

Initiating a Transfer

Transfers are initiated by the application (using the DG_| MAGE / DAT_I MAGEXXXXFER /
MSG_CET operations). A successful transfer transitions the session to State 7. If the transfer fails,
the Source returns TWRC_FAI LURE with the appropriate Condition Code and remains in State 6.

Concluding a Successful Transfer

To signal that the transfer is complete (i.e. the file is completed or the last buffer filled), the Source
should return TWRC_XFERDONE. In response, the application must send a DG_CONTROL /
DAT_PENDI NGXFERS / MSG_ENDXFER operation. Only then may the Source transition from
State 7 back to State 6 or to State 5 if no more images are ready to be transferred.

If more images are pending transfer, the Source must wait in State 6 until the application either
requests the transfer or aborts the transfers. The Source may not “time-out” on any TWAIN
transaction.

Aborting a Transfer

Either the application or Source can originate the termination of a transfer (although the
application cannot do this in the middle of a Native or Disk File mode transfer). The Source
generally terminates the transfer if the user cancels the transfer or a device error occurs which the
Source determines is fatal to the transfer or the connection with the application. If the user
canceled the transfer, the Source should return TWRC_CANCEL to signal the premature
termination. The session remains in State 7 until the application sends the DG_CONTROL /
DAT_PENDI NGXFERS / MsG_ENDXFER operation. If the Source aborts the transfer, it returns
TWRC_FAI LURE and the session typically remains in State 6. (If the failure occurs during the
second buffer, or a later buffer, of a Buffered Memory transfer, the session remains in State 7.)

TWAIN 2.4 Specification

Native Mode Transfers

On Native mode transfers, the data parameter in the DSM_Ent r y call is a pointer to the image
handle. Refer to Chapter 12, "Operating System Dependencies" about each OS native file format.

On Windows

Data points to a handle to a DIB (Device Independent Bitmap) located in memory.

On Macintosh

If both the application and the data source are TWAIN 2.4 and later: Data points to a handle to
a TIFF image in memory.

If either the application or the data source is TWAIN 2.3 and earlier: Data points to a handle to
a Picture (a PicHandle). It is a Quick Draw picture located in memory.

On Linux

Data points to a handle to a TIFF image. It is a TIFF file located in memory.

Native transfers require the data to be transferred to a single large block of RAM. Therefore, they
always face the risk of having an inadequate amount of RAM available to perform the transfer
successfully.

If inadequate memory prevents the transfer, the Source has these options:

* Fail the transfer operation- Return TWRC_FAI LURE / TWCC_LOWEMORY
* Allow the user to clip the data to fit into available memory - Return TWRC_XFERDONE
* Allow the user to cancel the operation - Return TWRC_CANCEL

If the operation fails, the session remains in State 6. If the operation is canceled, the session
remains in State 7 awaiting the DG_CONTRCL / DAT_PENDI NGXFERS / MSG_ENDXFER or
MSG_RESET from the application. The application can return the session to State 4 and attempt to
renegotiate the transfer mechanism (I CAP_XFERMECH) to Disk File or Buffered Memory mode.

The Source cannot be interrupted by the application when it is acquiring an image through Native
Mode Transfer. The Source’s user interface may allow the user to abort the transfer, but the
application will not be able to do so even if the application presents its own acquisition user
interface.

Disk File Mode Transfers

The Source selects a default file format and file name (typically, TWAI N. TMP in the current
directory). It reports this information to the application in response to the DG_CONTROL /
DAT_SETUPFI LEXFER / MSG_GET.

The application may determine all of the Source’s supported file formats by using the

| CAP_I MAGEFI LEFORVAT capability. Based on this information, the application can request a
particular file format and define its own choice of file name for the transfer. The desired file
format and file name will be communicated to the Source in a DG_CONTROL /

DAT_SETUPFI LEXFER / MSG_SET.

TWAIN 2.4 Specification 5-9

Chapter 5

When the Source receives the DG | MAGE / DAT_I MAGEFI LEXFER / MSG_SET operation, it
should transfer the data into the designated file. The following conditions may exist:

Condition How to Handle
No file name and/ or file format was Use either the Source’s default file name or
specified by the application during setup the last file information given to the Source

by the application. Create the file.

The application specified a file but failed to Create the application’s defined file.
create it

The application’s specified file exists but Overwrite the existing data.
has data in it

The Source cannot be interrupted by the application when it is acquiring a file. The Source’s user
interface may allow the user to abort the transfer, but the application will not be able to do so even
if the application presents its own acquisition user interface.

Buffered Memory Mode Transfers

When the Source transfers strips of data, the application allocates and deallocates buffers used for
a Buffered Memory mode transfer. However, the Source must recommend appropriate sizes for
those buffers and should check that the application has followed its recommendations.

When the Source transfers tiles of data, the Source allocates the buffers. The application is
responsible for deallocating the memory.

To determine the Source’s recommendations for buffer sizes, the application performs a
DG _CONTROL / DAT_SETUPMEMXFER / MSG _GET operation. The Source fills in the
MinBufSize, MaxBufSize, and Preferred fields to communicate its buffer recommendations.
Buffers must be double-word aligned and padded with zeros per raster line.

When an application issues a DG_| MAGE / DAT_I| MAGEMEMXFER / MSG_GET operation, check
the TW | MAGEMEMXFER. Mernor y. Lengt h field to determine the size of the buffer being
presented to you. If it does not fit the recommendations, fail the operation with TWRC_FAI LURE
/ TWCC_BADVALUE.

If the buffer is an appropriate size, fill in the required information.

* Sources must write one or more complete lines of image data (the full width of a strip or tile)
into the buffer. Partial lines of image data are not allowed. If some of the buffer is unused, fill
it in with zeros. Additionally, each line must be aligned to a 32-bit boundary. Return
TWRC_SUCCESS after each successful buffer except for the last one (return TWRC_XFERDONE
after that one).

* If the Source is transferring data whose bit depth is not 8 bits, it should fill the buffer without
padding the data. If a 5-bit device wants the application to interpret its data as 8-bit data, it
should report that it is supplying 8-bit data, make the valid data bits the most significant bits
in the data byte, and pad the least significant bits with bits of whichever sense is “lightest”.
Otherwise, the Source should pack the data bits together. For a 5-bit R-G-B device, that means
the data for the green channel should immediately follow the last bit of the red channel. The
application is responsible for “unpacking” the data. The Source reports how many bits it is
providing per pixel in the Bi t sPer Pi xel field of the TW | MAGEI NFOdata structure.

5-10 TWAIN 2.4 Specification

Error Handling

Operation Triplet and State Verification

Sources support all defined TWAIN triplets. A Source must verify every operation triplet
they receive. If the operation is not recognized, the Source should return TWRC_FAI LURE and
TWCC_BADPROTCOCOL.

Sources must also maintain an awareness of what state their session is in. If an application
invokes an operation that is invalid in the current state, the Source should fail the operation
and return TWRC_FAI LURE and TWCC_SEQERROR. Valid states for each operation are listed
in Chapter 7, "Operation Triplets".

Anytime a Source fails an operation that would normally cause the session to transition to
another state, the session should not transition but should remain in the original state.

Each triplet operation has its own set of valid Return and Condition Codes as listed in Chapter
7, "Operation Triplets". The Source must return a valid Return Code and set a valid Condition
Code, if applicable, following every operation.

All Return Codes and Condition Codes in the Source should be cleared upon the next call to
DS_Entry(). Clearingis delayed when a DG_CONTROL / DAT_STATUS / MSG_GET
operation is received. In this case, the Source will fill the TW STATUS structure with the
current condition information and then clear that information.

If an application attempts to connect to a Source that only supports a single connection when
the source is already opened, the Source should respond with TWRC_FAI LURE and
TWCC_MAXCONNECTI ONS.

For Windows Sources only, the DLL implementation makes it possible to be connected to
more than one application. Unless the operation request is to open the Source, the Source
must verify the application originating an operation is currently connected to the Source. To
do this:

The Source must maintain a list containing the Id value for each connected application.
(The I d value comes from the application’s TW | DENTI TY structure which is
referenced by the pOri gi n parameter in the DS_Entry() call.)

The Source should check the TW | DENTI TY. | d information of the application sending
the operation and verify that it appears in the Source’s list of connected applications.

For Windows only, if connected to multiple applications, the Source is responsible for
maintaining a separate, current Condition Code for each application it is connected to. The
Source writer should also maintain a temporary, and separate, Condition Code for any
application that is attempting to establish a connection with the Source. This is true both for
Sources that support only a single connection or have reached the maximum connections.

Unrecoverable Error Situations

The Source is solely responsible for determining whether an error condition within the Source is
recoverable or not. The Source must determine when, and what, error condition information to
present to the user. The application relies on the Source to specify when a failure occurs. If a
Source is in an unrecoverable error situation, it may send a M5G_CL OSEDSREQ'to the application
to request to have its user interface disabled and have an opportunity to begin again.

TWAIN 2.4 Specification

5-11

Chapter 5

Memory Management

5-12

The Source does not have unlimited memory available, so it should be conservative in its use. Itis
valid for an application to open a Source and leave it open between several acquires. Therefore,
Sources should minimize the time and resources required to load and remain open (in State 4). It
is important for the Source writer to recognize that their Source will be using the memory heap of
the host application, not its own heap. Therefore, the Source should be conscientious with
allocation and de-allocation of memory.

General Guidelines

The following are some general guidelines:

Check, when the Source is launched, to assure that enough memory space is available for
adequate execution.

Always verify that allocations were successful.
Work with relocatable objects whenever possible - the heap you fragment is not your own.
Deallocate temporary memory objects as soon as they are no longer needed.

Maintain as small a non-operating memory footprint as can prudently be done - the Source
will be “compatible” with more applications on more machines.

Clean up after yourself. When about to be closed, deallocate all locally allocated RAM,
eliminate any other objects on the heap, and prepare as appropriate to terminate.

Local Variables

The Source may allocate and maintain local variables and buffers. Remember that you are
borrowing RAM from the application so be efficient about how much RAM is allocated
simultaneously.

Instances Where the Source Allocates Memory

In general, the application allocates all necessary structures and passes them to the Source. There
are a few exceptions to this rule:

The Source must create the container, pointed to by the hContainer field, needed to hold
capability information on DG_CONTROL / DAT_CAPABI LI TY / MSG_GET,
MSG_GETCURRENT, MSG_CGETDEFAULT, or MSG_RESET operations. The application
deallocates the container.

The Source allocates the buffer for Native mode data transfers. The application deallocates
the buffer.

Normally, the application creates the buffers used in a Buffered Memory transfer (DG_| MAGE
| DAT_I MAGEMEMXFER / MSG_GET). However, if the Source is transferring tiled data,
rather than strips of data, it is responsible for allocating the buffers. The application
deallocates the buffers.

See the DG | MAGE / DAT_JPEGCOVPRESSI ON operations.

TWAIN 2.4 Specification

Requirements for a Source to be TWAIN-Compliant

The following lists of triplets and capabilities map out the minimum required set of features that a
Source must offer programmatically to be TWAIN compliant. Sources, though, are strongly
encouraged to go beyond this list and implement as many of their capabilities as possible for

programmatic access.

Initially, this list is organized by versions of TWAIN to help Source writers decide which version
they wish to support. Itis also intended for Applications writers, who can use this information to

identify the real level of TWAIN support provided by a Source if its reported version is not
matched by the items in this list. Further in this section, additional mandatory capabilities are

listed based on the value set for a Capability that has been implemented, or when a Source with a
specific feature is being used.

Version
Operations Required
DG CONTROL / DAT_CAPABILITY / MSG GET 1.5
DG _CONTROL / DAT_CAPABILITY / MSG_GETCURRENT 1.5
DG CONTROL / DAT_CAPABILITY / MSG GETDEFAULT 1.5
DG _CONTROL / DAT_CAPABILITY / MSG_RESET 1.5
DG CONTROL / DAT_CAPABILITY / MSG_SET 1.5
DG _CONTROL / DAT_EVENT / MSG_PROCESSEVENT 1.5
DG CONTROL / DAT_IDENTITY / MSG GET 1.5
DG_CONTROL / DAT_I DENTITY / MSG_OPENDS 1.5
DG CONTROL / DAT_I DENTITY / MSG_CLOSEDS 1.5
DG_CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER 1.5
DG _CONTROL / DAT_PENDI NGXFERS / MsG_GET 1.5
DG_CONTROL / DAT_PENDI NGXFERS / MSG_RESET 1.5
DG _CONTROL / DAT_SETUPMEMXFER / MSG_GET 1.5
DG _CONTROL / DAT_STATUS / MSG_CGET 1.5
DG _CONTROL / DAT_USERI NTERFACE / MSG DI SABLEDS 1.5
DG_CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS 1.5
DG _CONTROL / DAT_XFERGROUP / NMSG_GET 1.5
DG_| MAGE / DAT_I MAGEI NFO / MSG_CGET 1.5
DG | MAGE / DAT_I MAGELAYQUT / MSG _GET 1.5
DG_| MAGE / DAT_I MAGELAYOQUT / MSG_GETDEFAULT 1.5
DG | MAGE / DAT_I MAGELAYOUT / MSG_RESET 1.5
DG_| MAGE / DAT_I MAGELAYQUT / MSG_SET 1.5
DG | MAGE / DAT_| MAGEMEMXFER / MSG_GET 1.5
DG | MAGE / DAT_I MAGENATI VEXFER / MSG_CET 1.5
DG _CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT 1.9

TWAIN 2.4 Specification

5-13

Chapter 5

5-14

Version
Operations Required
DG CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS * 1.9
* Support both Ul and Programmatic Control Through:
(Show U == TRUE) [UI Control]
(Show U == FALSE) [Programmatic Control]
DG CONTROL / DAT _CAPABI LI TY / MSG RESETALL 1.91
DG CONTROL / DAT_CAPABILITY / MSG GET * 2.0
*For TW BOQL capabilities return enumerations when the Application is 2.0 or
greater. Return one value when the application less than 2.0
Version
Capabilities Requirements Required
CAP_SUPPCORTEDCAPS MSG_CET required 1.5
CAP_XFERCOUNT All MBG_* operations required 1.5
| CAP_COWPRESSI ON All M5G_GET* operations required 1.5
| CAP_BI TDEPTH All MBG_* operations required 1.5
| CAP_BI TORDER All M5G_* operations required 15
| CAP_PLANARCHUNKY All MBG_GET* operations required 1.5
| CAP_PHYSI CALHEI GHT All M5G_GET* operations required 1.5
| CAP_PHYSI CALW DTH All MBG_GET* operations required 1.5
| CAP_PI XELFLAVOR All M5G_GET* operations required 1.5
| CAP_PI XELTYPE All MBG_* operations required 1.5
| CAP_UNI TS All M5G_* operations required 1.5
| CAP_XFERMECH All MBG_* operations required 1.5
| CAP_XRESCLUTI ON All M5G_* operations required 1.5
| CAP_YRESOLUTI ON All MBG_* operations required 1.5
CAP_DEVI CEONLI NE MSG_CET required 1.6
CAP_UlI CONTROLLABLE MSG_GET required 1.6
CAP_UI CONTROLLABLE (Value = TRUE) 1.9
CAP_SUPPORTEDDATS All MBG_GET* operations required 22
| CAP_XNATI VERESOLUTI ON All M5G_GET* operations required for scanners 22
| CAP_YNATI VERESOLUTI ON All MSG_GET* operations required for scanners 2.2

TWAIN 2.4 Specification

Mandatory Features Dependencies

SUPPORTED GROUPS

When source Version
supports: Must support: intro
DF_DS2 DG _CONTROL / DAT_ENTRYPO NT / MSG_SET 2.0
CUSTOM CONTENT
When source Version
supports: Must respond to: Mandatory capability: intro
Custom Content DG _CONTROL / DAT_CAPABI LI TY |CAP_CUSTOM NTERFACEGUI D 2.1
MSG_GET
MSG_GETLABEL
MSG_GETLABELENUM
CAP_SEGMENTED
Version
When value is: Must respond to: Mandatory capability: intro
TWSG_MANUAL DG_CONTROL / CAP_SUPPORTEDCAPSSEGVENTUNI QUE 22
DAT_CAPABI LI TY
Al MG *
ICAP_PIXELTYPE
Version
When value is: Must respond to: Mandatory capability: intro
TWPT_BW DG _CONTROL / DAT_CAPABI LI TY |1 CAP_BI TDEPTHREDUCTI ON 1.5
Al MG *
ICAP_BITDEPTHREDUCTION
Version
When value is: Must respond to: Mandatory capability: intro
TVBR_HALFTONE DG _CONTROL / DAT_CAPABI LI TY || CAP_HALFTONES 1.0
Al MSG *
TWBR_CUSTHALFTONE | DG _CONTRCL / DAT_CAPABI LI TY || CAP_CUSTHALFTONE 1.0
Al MG *
TVWBR_THRESHOLD DG_CONTRCL / DAT_CAPABI LI TY || CAP_THRESHOLD 1.5
Al MG *
ICAP_XFERMECH
Version
When value is: Must support: intro
TWSX_FI LE | CAP_| MAGEFI LEFORVAT 1.0
DG_CONTRCL / DAT_SETUPFI LEXFER / MSG_GET, MsSG_SET
DG | MAGE / DAT_I| MAGEFI LEXFER / MSG_CGET

TWAIN 2.4 Specification

5-15

Chapter 5

ICAP_SUPPORTEDSIZES

Scanning using
Fixed Frame Sizes

Al NVSG *

When source Version
supports: Must respond to: Mandatory capability: intro
Document DG_CONTROL / DAT_CAPABI LI TY |1 CAP_SUPPORTEDSI ZES 1.0

Document Feeders

Basic document feeder devices are those that have paper trays to hold one or more documents for
transfer. Unique aspects of a document feeder include the ability to transfer more than one image,
the typical inability to re-scan the same page twice, and the fact that if there is no paper loaded, it
is usually impossible to scan.

Special Case

5-16

ALL DOCUMENT FEEDERS
Version
When source is a: | Must respond to: Mandatory capability: intro
Document Feeder | DG_CONTRCL / DAT_CAPABI LI TY | CAP_FEEDERENABLED 1.0
Al MG * CAP_PAPERDETECTABLE 1.6
CAP_AUTOFEED 1.0
CAP_PAPERDETECTABLE
Version
When value is: Must respond to: Mandatory capability: intro
TRUE DG _CONTRCOL / DAT_CAPABI LI TY | CAP_FEEDERLOADED 1.0
Al MG *
CAP_AUTOFEED
Version
When value is: Must provide advanced paper handling through: intro
FALSE CAP_EXTENDEDCAPS 1.0
CAP_FEEDPAGE 1.0
CAP_CLEARPAGE 1.0
CAP_REW NDPAGE 1.0
ADF/FLATBED COMBO SCANNER
When source Version
supports: Must respond to: Mandatory capability: intro

Flatbed / ADF
combo scanner

DG_CONTROL / DAT_CAPABI LI TY
Al MBG *

CAP_AUTOVATI CSENSEMEDI UM 21

TWAIN 2.4 Specification

DUPLEX

When source Version
supports: Must respond to: Mandatory capability: intro
Duplex scanning | DG_CONTROL / DAT_CAPABI LI TY | CAP_DUPLEX 1.7
Al MG * CAP_DUPLEXENABLED 1.7
PRINTERS
When source Version
controls: Must respond to: Mandatory capabilities: intro
Any printer type | DG_CONTRCL / CAP_PRI NTERENABLED 1.8
device DAT_CAPABI LI TY CAP_PRI NTER 1.8
Al MG * CAP_PRI NTERI NDEX 2.2
CAP_PRI NTERSTRI NG 2.2
CAP_PRI NTERSUFFI X 2.2
When source
controls: Must respond to: Mandatory capability:
Printer vertical DG_CONTRQL / CAP_PRI NTERVERTI CALOFFSET 22
position DAT_CAPABI LI TY
MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG RESET
and MSG _SET
CAP_PRINTERMODE
Version
When source supports: | Must respond to: Mandatory capability: intro
CAP_PRI NTERSTRI NG | DG_CONTROL / DAT_CAPABI LI TY | CAP_PRI NTERMODE 1.8
Al MSG *
CAP_PRI NTERSUFFI X | DG_CONTROL / DAT_CAPABI LI TY | CAP_PRI NTERMODE 1.8
Al MG *
ENDORSER
When source Version
controls: Must respond to: Mandatory capabilities: intro
Endorser DG _CONTRCL / DAT_CAPABI LI TY || CAP_SUPPORTEDEXTI MAGElI NFO 2.1
Al MG * CAP_ENDORSER 1.7

Production Quality High Speed/Volume Scanners

Production Quality High Speed/Volume scanners have greater demands on TWAIN. With
diverse features like bar code reading, imprinting and compressions, they require much more
attention to detail. Production drivers should be prepared to serve applications that wish to
achieve complete programmatic control of all typical and custom features and this requires a
VERY robust TWAIN implementation.

Mid- and High-volume scanners must support the following operational triplets:

DG_CONTROL / DAT_USERI NTERFACE / M5G_ENABLEDSUI ONLY

TWAIN 2.4 Specification

5-17

Chapter 5

5-18

DG _CONTROL / DAT_CUSTOVDSDATA /| MSG _GET & MSG_SET

INTERNAL IMAGE BUFFER

MSG_GET

Version
When source supports: | Must respond to: Mandatory capabilities: intro
Transfer of multiple DG _CONTROL / DAT_CAPABI LI TY |CAP_AUTOSCAN 1.6
images ahead of Al MSG * CAP_NMAXBATCHBUFFERS 1.8
retrieval
ICAP_UNDEFINEDIMAGESIZE
Version
When source supports: Must respond to: | Mandatory capability: intro
| CAP_AUTOCSI ZE DG_CONTROL / | CAP_UNDEFI NEDI MAGESI ZE 2.0
DAT_CAPABI LI TY
Al MG *
| CAP_AUTQOVATI CBORDERDETECTI ON | DG_CONTRCL / | CAP_UNDEFI NEDI MAGESI ZE 1.8
DAT_CAPABI LI TY
Al MG *
| CAP_AUTOVATI CLENGTHDETECTI ON | DG_CONTROL / | CAP_UNDEFI NEDI MAGESI ZE 21
DAT_CAPABI LI TY
Al MSG *
| CAP_AUTQOVATI CROTATE DG_CONTRCL / | CAP_UNDEFI NEDI MAGESI ZE 1.8
DAT_CAPABI LI TY
Al MG *
| CAP_FLI PROTATI ON DG_CONTROL / | CAP_UNDEFI NEDI MAGESI ZE 1.8
DAT_CAPABI LI TY
Al MG *
ICAP_COMPRESSION
Version
When value is: Must respond to: Mandatory capabilities: intro
TWCP_JPEG DG _CONTROL / DAT_CAPABILITY || CAP_JPEGPI XELTYPE 1.5
Al MG * | CAP_JPEGQUALI TY 1.9
| CAP_JPEGSUBSAMPLI NG 2.2
TWCP_GROUP32D DG _CONTROL / DAT_CAPABILITY |1 CAP_CCI TTKFACTOR 1.0
Al MSG *
EXTENDED IMAGE INFO
Version
When source supports:: | Must respond to: Mandatory capabilities: intro
Extended image info DG_CONTROL / | CAP_EXTI MAGElI NFO 1.7
DAT_CAPABI LI TY | CAP_SUPPORTEDEXTI MAGEI NFO 2.1

Mandatory values:

TWAIN 2.4 Specification

Version
When source supports:: | Must respond to: Mandatory capabilities: intro
Extended image info DG_CONTROL / TWVEI _ DOCUMENTNUMBER 1.9
DAT_EXTI MAGEI NFO | TWEI _ PAGENUVBER 1.9
TVEEI _CAMERA 1.9
TVEEI _ FRAMENUMBER 1.9
TVEEI _FRAME 1.9
TVEI _PI XELFLAVOR 1.9
TVEI _ PAPERCOUNT 22
Mandatory value:
Extended image info DG_CONTRCL / TWEI _PAGESI DE 2.1
and duplex DAT_EXTI MAGEI NFO
PATCH CODE DETECTION *
When source Version
controls: Must respond to: Mandatory capabilities: intro
Patch Code DG_CONTRQL / | CAP_PATCHCODEDETECT!I ONENABLED 1.8
Detection DAT_CAPABI LI TY | CAP_SUPPORTEDPATCHCODETYPES 1.8
Al MSG * CAP_JOBCONTROL 1.7

* Note: Source must also fill in the extended EOJ field of the TW PENDI NGXFERS structure
when CAP_JOBCONTRQL is enabled. See DG_CONTROL / DAT_PENDI NGXFERS /

M5G_ENDXFER

BARCODE DETECTION

When source Version

controls: Must respond to: Mandatory capabilities: intro

Bar Code DG_CONTRQL / | CAP_EXTI MAGEI NFO 1.7

Detection DAT_CAPABI LI TY | CAP_BARCODEDETECTI ONENABLED 1.8
Al MBG * | CAP_SUPPORTEDBARCODETYPES 1.8

ALARMS

When source Version

controls: Must respond to: Mandatory capability: intro

Audible alarms | DG_CONTROL / DAT_CAPABI LI TY | CAP_ALARVS 1.8
Al MG *

Alarm volume | DG CONTROL / DAT_CAPABI LI TY |CAP_ALARWOLUME 1.8
Al MG *

MICR DETECTION

When source Version

supports: Must respond to: Mandatory capabilities: intro

Reading Micr DG_CONTROL / | CAP_EXTI MAGEI NFO 1.7

data DAT_CAPABI LI TY | CAP_SUPPORTEDEXTI MAGEI NFO 2.1
Al MBG * CAP_M CRENABLED 2.0

TWAIN 2.4 Specification

5-19

Chapter 5

Permanent Storage/Retrieval Devices

Permanent storage/retrieval devices are unique in that more than one image is stored and the
dimensions and bit depth may vary from image to image. These devices could be just a database
of images, or a PCMCIA card from a Digital Camera. Such devices need features for browsing the
available images, retrieving properties and selecting sets of images for transfer.

PERMANENT STORAGE/RETRIEVAL

Version
When source supports: | Required operations: intro
Permanent Storage DG _CONTRCL / DAT_FI LESYSTEM / MSG_COPY,
Retrieval MSG _DELETE, MSG_CREATEDI RECTCRY,
MSG_AUTOVATI CCAPTURED, MSG_FORMATMEDI A,
MSG_GETFI RSTFI LE, MSG_CETI NFO, MSG_GETNEXTFI LE,
MSG_RENAME
Must respond to:: Mandatory capability:
DG _CONTRCL / DAT_CAPABI LI TY || CAP_I MAGEDATASET 1.7
Al MSG *
ANNOTATION
Version
When source supports: | Must respond to: Mandatory capabilities: intro
Annotation DG _CONTRCL / DAT_CAPABI LI TY | CAP_AUTHOR 1.0
Al MG * CAP_CAPTI ON 1.0
CAP_TI MEDATE 1.0
FLASH
Version
When source supports: | Must respond to: Mandatory capability: intro
Flash DG_CONTRCOL / DAT_CAPABI LI TY | | CAP_FLASHUSED2 1.8
Al MSG *
AUDIO DEVICES
When source Version
supports: Must respond to: Mandatory capability: intro
Audio snippets | DG_CONTROL / ACAP_XFERMECH 1.8
to be associated | DAT_CAPABI LI TY
with an image Al MSG *
When source
supports: Must respond to:
Transfer of DG CONTROL / DAT_XFERGROUP / MSG _SET with a value of DG_AUDI O
Audio snippets 744 support these operations:
DG_AUDI O DAT_AUDI OFI LEXFER/ MSG_GET
DG_AUDI O DAT_AUDI ONATI VEXFER/ M5G_GET

5-20 TWAIN 2.4 Specification

Portable Capture Devices

Portable capture devices are very similar to permanent storage and retrieval devices in that they
typically store a number of images, however they differ in that they often have real time capture
opportunities and limitations related to battery life and lenses. Examples of such devices would be
Digital Camera’s and Camcorders.

ASYNCHRONOUS DEVICE EVENTS

Version
When source supports: | Must respond to: Mandatory capability: intro
Asynchronous Device | DG_CONTROL / DAT_CAPABI LI TY | CAP_DEVI CEEVENT 1.8
Events Al MG *
STREAM IMAGES

Version
When source supports: | Must respond to: Mandatory capability: intro
Stream of images for DG _CONTROL / DAT_CAPABI LI TY | CAP_CAMERAPREVI EVWI 1.8
Live Preview Al MSG *
AUTOMATIC CAPTURE
When source Version
supports: Must respond to: Mandatory capabilities: intro
Automatic DG _CONTRCL / DAT_CAPABI LI TY | CAP_AUTOVATI CCAPTURE 1.8
capture Al MG * CAP_TI MEBEFOREFI RSTCAPTURE 1.8

CAP_TI MEBETWEENCAPTURES 1.8

Other Topics

Custom Operations

Manufacturers may add custom operations to their Sources. These can also be made known to
application manufacturers. This mechanism allows an application to access functionality not

normally available from a generic TWAIN Source.

One use of this mechanism might be to implement device-specific diagnostics for a hardware
diagnostic program. These custom operations should be used sparingly and never in place of pre-
defined TWAIN operations.

Custom operations are defined by specifying special values for Data Groups (DGs), Data
Argument Types (DATs), Messages (MSGs), and Capabilities (CAPs). The following areas have
been reserved for custom definitions:

TWAIN 2.4 Specification

5-21

Chapter 5

Data Groups Top 8 bit flags (bits 24 - 31) in the DG identifiers reserved for
custom use.

DATs Designators with values greater than 8000 hex.

Messages Designators with values greater than 8000 hex.

Capabilities Designators with values greater than 8000 hex.

The responsibility for naming and managing the use of custom designators lies wholly upon the
TWAIN element originating the designator and the element consuming it. Prior to interpreting a
custom designator, the consuming element must check the originating element’s Pr oduct Nare
string from its TW | DENTI TY structure. Since custom operation numbers may overlap, this is the
only way to insure against confusion.

5-22 TWAIN 2.4 Specification

Entry Points and Triplet Components

Chapter Contents

Entry Points oo 6-1
Data GIoUPS . . .o .ottt 6-4
Data Argument Types. 6-4
MESSAEES . . . o oottt 6-6
Custom Components of Triplets. i e 6-8

Entry Points

TWAIN has the following possible entry points:

* DSM Entry() -located in the Source Manager and typically called by applications, with the
following exceptions where a Source calls the Source Manager to communicate with an
Application:

DG _CONTROL / DAT_NULL / MSG_XFERREADY
DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK
DG_CONTROL / DAT_NULL / MSG_DEVI CEEVENT

e DS_Entry() -located in the Source and called only by the Source Manager.

Programming Basics

* Upon entry, the parameters must be ordered on the stack in Pascal form. Be sure that your
code expects this ordering rather than the reverse order that C uses.

* Refer to Chapter 12, "Operating System Dependencies" about each OS Programming Basics.
Data Flags and Data Groups

Versions of the TWAIN Specification up to and including TWAIN 2.0 indicate that the high 8-bits
(24 - 31) in the TW_ | DENTI TY. Suppor t edGr oups are reserved for custom use.

TWAIN 2.4 Specification 6-1

Chapter 6

6-2

TWAIN 2x has taken these bits for use by the Data Flags (DF_APP2, DF_DSM2 and DF_DS2).
This breaks backwards capability with previous versions of the Specification. The risk is
considered to be very low, since very few Sources or Applications work with these bits. However,
the conflict can be managed in the following ways.

* Avoid the use of 0x10000000, 0x20000000 and 0x40000000, these correspond to
DF_DSM, DF_APP2 and DF_DS2. The remaining bits: 0x01000000, 0x02000000,
0x04000000, 0x08000000 and 0x80000000 are still in the custom space for Applications
and Sources, and they will remain free for that use in all subsequent versions of TWAIN.

* Applications can modify their code to recognize when these bits are in use by a particular
Source, which has always been a necessary pre-requisite for custom features, since the bits are
guaranteed to have different meaning for different vendors.

* These flags are of most interest to the Data Source Manager, which is now open source (they
dictate when DAT_ENTRYPO NT is called). If a legacy driver is using one of the custom bits,
then propose a possible work-around to the TWAIN Working Group.

Declaration of DSM_Entry()

Written in C code form, the declaration looks like this:

TW UI NT16 TW CALLI NGSTYLE DSM Entry
(pTWIDENTITY pOigin, /'l source of nessage

pTW.I DENTITY pDest, /1 destination of nessage
TW Ul NT32 DG, /1 data group I D: DG XxxX

TW Ul NT16 DAT, /] data argument type: DAT_XXXX
TW Ul NT16 MBG, /1 message I D: MBG XXXX

TW MEMREF pDat a /'l pointer to data

)

Parameters of DSM_Entry()
pOrigin

This points to a TW | DENTI TY structure, allocated by the application, that describes the
application making the call. One of the fields in this structure, called Id, is an arbitrary and
unique identifier assigned by the Source Manager to tag the application as a unique TWAIN
entity. The Source Manager maintains a copy of the application’s identity structure, so the
application must not modify that structure unless it first breaks its connection with the Source
Manager, then reconnects to cause the Source Manager to store the new, modified identity.

pDest

This is set ei t her to NULL if the application is aiming the operation at the Source Manager or
to the TW | DENTI TY structure of the Sour ce that the application is attempting to reach. The
application allocated the space for the Source’s identity structure when it decided which
Sour ce was to be connected. The Source’s TW | DENTI TY. | d is also uniquely set by the
Source Manager when the Source is opened and should not be modified by the Sour ce. The
application should not count on the value of this field being consistent from one session to the
next because the Source Manager reallocates these numbers every time it is opened. The
Source Manager keeps a copy of the Sour ce’ s identity structure as should the application
and the Sour ce.

TWAIN 2.4 Specification

DG

The Data Group of the operation triplet. Currently, only DG_CONTROL, DG_| MAGE, and
DG_AUDI Oare defined.

DAT
The Data Argument Type of the operation triplet. A complete list appears later in this
chapter.

MSG

The Message of the operation triplet. A complete list appears later in this chapter.

pData

The pDat a parameter is of type TW MEVREF and is a pointer to the data (a variable or, more
typically, a structure) that will be used according to the action specified by the operation
triplet.

Declaration of DS_Entry()

DS_Ent ry is only called by the Source Manager. Written in C code form, the declaration looks
like this:

TW UI NT16 TW CALLI NGSTYLE DS Entry
(pTWIDENTITY pOrigin, /'l source of nmessage

TW Ul NT32 DG, /1 data group I D: DG XxxX

TW Ul NT16 DAT, /] data argunent type: DAT_XXXX
TW Ul NT16 MSG, /1l message | D: MBG_xXxX

TW MEMREF pDat a /1 pointer to data

)

Declaration of TWAIN_Callback()

This function is registered by the Application and is only called by the Source Manager. The actual
name of the function is up to the application. Written in C code form, the declaration looks like
this:

TW UI NT16 TW CALLI NGSTYLE TWAI N_Cal | back
(pTWIDENTITY pOigin, /'l source of nessage

TW Ul NT32 DG, /1 data group I D: DG XXXxX

TW Ul NT16 DAT, /1 data argunent type: DAT_XXXX
TW Ul NT16 MSG, /1 message I D: MBG_XXXX

TW MEMREF pDat a /1 pointer to data

TWAIN 2.4 Specification 6-3

Chapter 6

Data Groups

TWAIN operations can be broadly classified into three data groups:

Control Oriented (DG_CONTROL)

Controls the TWAIN session. Consumed by both Source Manager and Source. It is always
available, no matter what the current setting of DG_CONTROL / DAT_XFERGROUP.

Image Data Oriented (DG_IMAGE)

Indicates the kind of data to be transferred. Change between DG_AUDI Oand DG _| MAGE as
needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET. The default at startup is for a
Source to be ready to transfer DG_| MAGE data.

Audio Data Oriented (DG_AUDIO)

Indicates the kind of data to be transferred. Change between DG_AUDI Oand DG _| MAGE as
needed using DG_CONTRCOL / DAT_XFERGROUP / MSG_SET.

Currently, only image and audio data are supported but this could be expanded to include text,
etc. This has several future implications. If more than one data type exists, an application and a
Source will need to decide what type(s) of data the Source can, and will be allowed to, produce
before a transfer can occur. Further, if multiple transfers are being generated from a single
acquisition —such as when image and text are intermixed and captured from the same page —it
must be unambiguous which type of data is being returned from each data transfer.

Programming Basics

Note the following;:
* Data Group designators are 32-bit, unsigned values. The actual values that are assigned are
powers of two (bit flags) so that the DGs can be easily masked.

* There are 24 DGs designated as reserved for pre-defined DGs . Four are currently in use. The
top 8 bits are reserved for custom DGs.

Data Argument Types

Data Argument Types, or DATs, are used to allow programmatic identification of the TWAIN
type for the structure of status variable referenced by the entry point parameter pDat a. pDat a
will always point to a variable or data structure defined by TWAIN. If the consuming application
or Source switches (cases, etc.) on the DAT specified in the formal parameter list of the entry point
call, it can handle the form of the referenced data correctly.

Data Type Used by Associated structure or type
DAT_NULL ANY DG Null structure. No data required for the
operation

6-4 TWAIN 2.4 Specification

Data Type

Used by

Associated structure or type

DAT_CUSTOVBASE

DAT_AUDI OFI LEXFER

DAT_AUDI ONATI VEXFER

DAT_CAPABI LI TY
DAT_ENTRYPO! NT
DAT_EVENT
DAT_FI LESYSTEM
DAT_| DENTI TY
DAT_PARENT

DAT_PASSTHRU
DAT_PENDI NGXFERS
DAT_SETUPFI LEXFER
DAT_SETUPMEMXFER
DAT_STATUS
DAT_USERI NTERFACE
DAT_XFERGROUP

DAT_Cl ECOLOR
DAT_GRAYRESPONSE
DAT_| MAGEFI LEXFER

DAT_I MAGEI NFO

DAT_I MAGELAYQOUT

DAT_ | MAGEMEMXFER
DAT_| MAGEMEMFI LEXFER

n/ a

DG_AUDI O

DG_AUDI O

DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL

DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL

DG | MAGE
DG | MAGE
DG | MAGE

DG | MAGE
DG | MAGE
DG | MAGE
DG | MAGE

Not a DAT in itself, but the baseline a Source

must use when creating a custom DAT.

Operates on null data. Filename / Format

already negotiated.

TW HANDLE

On Windows - WAV handle
On Macintosh - audio handle
On Linux - WAV handle

TW CAPABI LI TY structure
TW ENTRYPO NT structure
TW _EVENT structure

TW FI LESYSTEMstructure
TW._I DENTI TY structure

TW HANDLE

On Windows - Window handle

On Macintosh - Not used. Set to NULL
On Linux - Not used. Set to NULL

TW PASSTHRU structure

TW PENDI NGXFERS structure
TW SETUPFI LEXFER structure
TW SETUPMEMXFER structure
TW STATUS structure

TW USERI NTERFACE structure

TW Ul NT32

A DGdesignator describing data to be
transferred (currently only image data is
supported)

TW_Cl ECOLOR structure
TW GRAYRESPONSE structure

Operates on NULL data. Filename/Format

already negotiated

TW_I MAGEI NFOstructure

TW_ I MAGELAYQUT structure
TW | MAGEMEMXFER structure
TW. | MAGEMEMXFER structure

TWAIN 2.4 Specification

Chapter 6

Data Type Used by Associated structure or type
DAT_| MAGENATI VEXFER DG_I MAGE TW HANDLE;
On Windows - DIB handle
On Macintosh - handle to TIFF image if data
source and application are version 2.4 or
later. PicHandle if either the application or
the data source is TWAIN 2.3 and earlier.
On Linux - handle to TIFF image
DAT_JPEGCOMPRESSI ON DG_I MAGE TW_JPEGCOVPRESSI ONstructure
DAT_PALETTES DG_I MAGE TW PALETTES structure
DAT_RGBRESPONSE DG_| MAGE TW RGBRESPONSE structure

Messages

A Message, or MSG, is used to communicate between TWAIN elements what action is to be taken
upon a particular piece of data, or for a data-less operation, what action to perform. If an
application wants to make anything happen in, or inquire any information from, a Source or the
Source Manager, it must make a call to DSM_Ent ry() with the proper M5Gas one parameter of
the operation triplet. The data to be acted upon is also specified in the parameter list of this call.

A MSG is always associated with a Data Group (DG) identifier and a Data Argument Type (DAT)
identifier in an operation triplet. This operation unambiguously specifies what action is to be
taken on what data. Refer to Chapter 7, "Operation Triplets" for the list of defined operation

triplets.

Message ID

Valid DAT(s)

Description of Specified Action

M5G_AUTOVATI CCAPTURE

DI RECTORY
MBG_CHANGEDI RECTORY
MSG_CLOSEDS
MBG_CLOSEDSM
MBG_CLOSEDSOK
MBG_CLOSEDSREQ
MBG_COPY
MBG_CREATEDI RECTORY
MBG_CUSTOVBASE

MSG_DELETE

DAT_FI LESYSTEM

DAT_FI LESYSTEM
DAT_I DENTI TY
DAT_PARENT
DAT_NULL
DAT_NULL

DAT_FI LESYSTEM
DAT_FI LESYSTEM

n/a

DAT_FI LESYSTEM

Place to store images acquired during automatic
capture

Change device, domain, host, or image directory
Close the specified Source

Close the Source Manager

Source requests for application to close Sour ce
Source requests for application to close Sour ce
Copy images across storage devices

Create an image directory

Not a message in itself, but the baseline a
Sour ce must use when creating a custom
message

Delete an image or an image directory

6-6

TWAIN 2.4 Specification

Message ID

Valid DAT(s)

Description of Specified Action

MBG_DEVI CEEVENT

MSG_DI SABLEDS
MSG_ENABLEDS
MBG_ENDXFER
MBG_FORMATMEDI A
MBG_GET

MSG_GETCLOSE

MSG_GETCURRENT
MSG_GETDEFAULT
MSG_GETFI RST
MSG_GETFI RSTFI LE
MSG_GETI NFO
MSG_GETNEXT
MSG_GETNEXTFI LE
MSG_NULL
MSG_OPENDS
MSG_OPENDSM
MSG_PASSTHRU
MSG_PROCESSEVENT

MSG_RENANE
MSG_RESET

MSG_SET
MBG_USERSELECT
MSG_XFERREADY

DAT_NULL

DAT_USERI NTERFACE
DAT_USERI NTERFACE
DAT_PENDI NGXFERS
DAT_FI LESYSTEM

various DATs

DAT_FI LESYSTEM

various DATSs
various DATSs
DAT_I DENTI TY
DAT_FI LESYSTEM
DAT_FI LESYSTEM
DAT_I DENTI TY
DAT_FI LESYSTEM
None

DAT_I DENTI TY
DAT_PARENT
DAT_PASSTHRU
DAT_EVENT

DAT_FI LESYSTEM

vari ous DATs

vari ous DATs
DAT | DENTI TY
DAT_NULL

Report an event from the Sour ce to the Sour ce
Manager

Disable data transfer in the Source

Enable data transfer in the Source
Application tells Source that transfer is over
Format a storage device

Get all Available Values including Current &
Default

Close a file context created by
MSG_GETFI RSTFI LE

Get Current value

Get Source’s preferred default value
Get first element from a “list”

Get the first file in a directory

Get information about the current file
Get next element from a “list”

Get the next file in a directory

No action to be taken

Open and Initialize the specified Sour ce
Open the Source Manager

For use by Source Vendors only

Tells Source to check if event/message belongs
to it

Rename an image or an image directory

Return specified item to power-on (TWAIN
default) condition

Set one or more values
Presents dialog of all Sour ces to select from

The Source has data ready for transfer to the
application

TWAIN 2.4 Specification

6-7

Chapter 6

Custom Components of Triplets

Custom Data Groups

A manufacturer may choose to implement custom data descriptors that require a new Data
Group. This would be needed if someone decides to extend TWAIN to, say, satellite telemetry.

* The top 8 bits of every DG_xxxx identifier are r eser ved for use as custom DGs. Custom DG
identifiers must use one of the upper 8 bits of the DG_xxxx identifier. Remember, DGs are bit
flags.

* The originator of the custom DG must fill the Pr oduct Nane field in the application or
Source’s TW | DENTI TY structure with a uniquely descriptive name. The consumer will look
at this field to determine whose custom DG is being used.

e TWAIN provides no formal allocation (or vendor-specific “identifier blocks”) for custom data
group identifiers nor does it do any coordination to avoid collisions.

* The DG_CUSTOVBASE value resides in the TWAI N. Hfile. All custom IDs must be numerically
greater than this base. A similar custom base “address” is defined for Data Argument Types,
Messages, Capabilities, Return Codes, and Condition Codes. The only difference in concept is
that DGs are the only designators defined as bit flags. All other custom values can be any
integer value larger than the xxxx_CUSTQOVBASE defined for that type of designator.

Custom Data Argument Types

DAT_CUSTOMVBASE is defined in the TWAI N. Hfile to allow a Source vendor to define “custom”
DATs for their particular device(s). The application can recognize the Source by checking the
TW | DENTI TY.ProductName and the TW | DENTI TY. TW VERSI ONstructure. If an application is
aware that this particular Source offers custom DATSs, it can use them. No changes to TWAIN or
the Source Manager are required to support such identifiers (or the data structures which they

imply).

Refer to the TWAI N. Hfile for the value of DAT_CUSTOVBASE for custom DATs. All custom values
must be numerically greater than this constant.

Custom Messages

As with the DATs, M5G_CUSTOMBASE is included in TWAI N. Hso that the Source writer can create
custom messages specific to their Source. If the applications understand these custom messages,

actions beyond those defined in this specification can be performed through the normal TWAIN

mechanism. No modifications to TWAIN or the Source Manager are required.

Remember that the consumer of these custom values will look in your

TW. I DENTI TY. Pr oduct Narre field to clarify what the identifier’s value means —there is no other
protection for overlapping custom definitions. Refer to the TWAI N. Hfile for the value of
MSG_CUSTOMBASE for custom Messages. All custom values must be numerically greater than this
value.

6-8 TWAIN 2.4 Specification

Chapter Contents

Operation Triplets

Triplet Overview o 7-1
Format of the Operation Triplet Descriptions., 7-5
Operation Triplets 7-7
Triplet Overview
From Application to Source Manager (Control Information)
Data Group Data Argument Type Message Page
DG_CONTROL DAT_I DENTI TY M5G_CLOSEDS 7-58
MSG_GETDEFAULT 7-61
MSG_GETFI RST 7-62
MSG_GETNEXT 7-64
MSG_OPENDS 7-66
MSG_SET 7-69
MSG_USERSELECT 7-70
DG_CONTROL DAT_PARENT M5G_CLOSEDSM 7-78
M5G_OPENDSM 7-79
DG_CONTROL DAT_STATUS MSG_CGET 7-98
TWAIN 2.4 Specification 7-1

Chapter 7

From Application to Source (Control Information)

Data Group Data Argument Type Message Page
DG_CONTROL DAT_CAPABI LI TY MBG_GET 7-13
MBG_GETCURRENT 7-16
M5G_GETDEFAULT 7-19
MBG_GETHELP 7-21
MBG_GETLABEL 7-22
M5G_CGETLABELENUM 7-23
M5G_QUERYSUPPORT 7-25
MBG_RESET 7-27
M5G_RESETALL 7-30
MSG_SET 7-32
M5G_SETCONSTRAI NT 7-35
DG_CONTROL DAT_CUSTOVDSDATA MSG_GET 7-38
MSG_SET 7-39
DG_CONTROL DAT_DEVI CEEVENT MSG_GET 7-40
DG_CONTROL DAT_FI LESYSTEM M5G_AUTOVATI CCAPTURE 7-45
DI RECTORY
M5G_CHANGEDI RECTCRY 7-46
MSG_COPY 7-48
MSG_CREATEDI RECTCRY 7-49
MSG DELETE 7-50
MSG_FORVATMEDI A 7-51
MSG_GETCLGCSE 7-52
MSG_GETFI RSTFI LE 7-53
MSG_GETI NFO 7-55
MSG_GETNEXTFI LE 7-56
MBG_RENANE 7-57
DG_CONTROL DAT_EVENT MSG_PROCESSEVENT 7-43
DG_CONTROL DAT_METRI CS MBG_GET 7-72
DG_CONTROL DAT_PASSTHRU MBG_PASSTHRU 7-80
DG_CONTROL DAT_PENDI NGXFERS M5G_ENDXFER 7-81
MSG_GET 7-83
MSG_RESET 7-85
MSG_STOPFEEDER 7-87

7-2

TWAIN 2.4 Specification

Data Group Data Argument Type Message Page
DG_CONTROL DAT_SETUPFI LEXFER MBG_GET 7-88
M5G_GETDEFAULT 7-90
MSG_RESET 7-92
MSG_SET 7-94
DG_CONTROL DAT_SETUPMEMXFER MBG GET 7-96
DG_CONTRCL DAT_STATUS MSG_CET 7-98
DG_CONTROL DAT_STATUSUTF8 MBG_GET 7-100
DG_CONTROL DAT_TWAI NDI RECT MBG_SETTASK 7-101
DG_CONTROL DAT_USERI NTERFACE M5G_DI SABLEDS 7-103
M5G_ENABLEDS 7-104
M5G_ENABLEDSUI ONLY 7-107
DG_CONTRCL DAT_XFERGROUP MSG_CET 7-108
MSG_SET 7-109
From Application to Source (Image Information)
Data Group Data Argument Type Message Page #
DG_| MAGE DAT_CI ECOLOR MSG_GET 7-110
DG_| MAGE DAT_EXTI MAGEI NFO MSG_GET 7-111
DG_| MAGE DAT_GRAYRESPONSE MSG_RESET 7-118
MSG_SET 7-119
DG_| MAGE DAT_| CCPRCFI LE MSG_GET 7-120
DG_| MAGE DAT_| MAGEFI LEXFER MSG_GET 7-122
DG_| MAGE DAT_I MAGEI NFO MSG_GET 7-124
DG_| MAGE DAT_ I MAGELAYQOUT MSG_GET 7-126
MSG_GETDEFAULT 7-128
MSG_RESET 7-129
MSG_SET 7-130
DG_| MAGE DAT_ | MAGEMEMFI LEXFER MSG_GET 7-132
DG_| MAGE DAT_ | MAGEMEMXFER MSG_GET 7-135
DG_| MAGE DAT_| MAGENATI VEXFER MSG_GET 7-138

TWAIN 2.4 Specification

7-3

Chapter 7

Data Group Data Argument Type Message Page #
DG_| MAGE DAT_JPEGCOMPRESSI ON MBG_GET 7-141
MSG_CGETDEFAULT 7-142
M5G_RESET 7-143
MBG_SET 7-144
DG_| MAGE DAT_PALETTES MBG GET 7-145
MSG_GETDEFAULT 7-146
M5G_RESET 7-147
MBG_SET 7-148
DG_| MAGE DAT_RGBRESPONSE MBG_RESET 7-149
MBG_SET 7-150

From Application to Source (Audio Information)

Data Group Data Argument Type Message Page #
DG_AUDI O DAT_AUDI CFl LEXFER MSG_GET 7-7
DG_AUDI O DAT_AUDI O NFO MSG_GET 7-8
DG_AUDI O DAT_AUDI ONATI VEXFER MSG_GET 79

From Source Manager to Source (Control Information)

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_I DENTI TY MSG_CLOSEDS 7-59
MSG_GET 7-60
MSG_OPENDS 7-68

From Source to Application (Control Information via the Source Manager)
(Used by Windows Sources only

)

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_NULL MSG_CLOSEDSOK 7-74
MBG_CLOSEDSREQ 7-75
MSG_DEVI CEEVENT 7-76
MSG_XFERREADY 7-77

7-4 TWAIN 2.4 Specification

TWAIN 2.0 (Entry Points)

Data Group Data Argument Type Message Page #
DG_CONTROL DAT_ENTRYPO NT MSG_CET 7-41
MSG_SET 7-42

Format of the Operation Triplet Descriptions

The following pages describe the operation triplets. They are all included and are arranged in
alphabetical order using the Data Group, Data Argument Type, and Message identifier list.

There are three operations that are duplicated because that have a different originator and/or
destination in each case. They are:
* DG_CONTROL / DAT_I DENTI TY / M5G_CLOSEDS
4 from Application to Source Manager
4 from Source Manager to Source
« DG _CONTROL / DAT_I DENTI TY / MSG_OPENDS
4 from Application to Source Manager
4 from Source Manager to Source
* DG_CONTROL / DAT_STATUS / MSG_GET
4 from Application to Source Manager

4 from Application to Source

The format of each page is:

TWAIN 2.4 Specification

7-5

Chapter 7

Triplet - The Concise DG / DAT / MSG Information

7-6

Call

Actual format of the routine call (parameter list) for the operation. Identification of the data
structure used for the pDat a parameter is included.

Valid States

The states in which the application, Source Manager, or Source may legally invoke the operation.

Description

General description of the operation.

Origin of the Operation (Application, Source Manager or, Source)

The action(s) the application, Source Manager, or Source should take before invoking the
operation.

Destination of the Operation (Source Manager or Source)

The action that the destination element (Source Manager or Source) of the operation will take.

Return Codes

The Return Codes and Condition Codes that are defined and valid for this operation.

See Also

Lists other related operation triplets, capabilities, constants, etc.

TWAIN 2.4 Specification

Operation Triplets

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG AUDI O DAT_AUDI OFI LEXFER, MSG GET, NULL);

Valid States

6 (transitions to state 7)

Description

(Similar operation to DAT_| MAGEFI LEXFER).

This operation is used to initiate the transfer of audio from the Source to the application via the
disk-file transfer mechanism. It causes the transfer to begin.

No special set up or action required. Application should have already invoked the DG_CONTROL
/ DAT_SETUPFI LEXFER / MSG_SET operation, unless the Source’s default transfer format and
file name (typically, TWAI NAUD. TMP) are acceptable to the application. The application need only
invoke this operation once per image transferred.

Source should acquire the audio data, format it, create any appropriate header information, and
write everything into the file specified by the previous DG_CONTROL / DAT_SETUPFI LEXFER /
MSG_SET operation, and close the file.

Audio transfers are optional. If an application transfers only the images and never changes to
DG_AUDI O then the audio snippets will be automatically discarded or skipped by the Source.

Return Codes

TWRC_CANCEL

TWRC_XFERDONE

TWRC_FAI LURE
TWCC_BADPROTOCOL.
TWCC_OPERATI ONERROR
TWCC_SEQERROR - not state 6.
[* The follow ng i ntroduced for 2.0 or higher */
TWCC_FI LEVWRI TEERROR

See Also
ACAP_XFERVMECH

TWAIN 2.4 Specification 7-7

Chapter 7

DG_AUDIO / DAT_AUDIOINFO / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG AUDI O DAT_AUDI O NFO, MSG_CET,
pSour ceAudi ol nf o) ;
pSour ceAudi ol nf o = A pointer to a TW AUDI O NFOstructure
Valid States
6and 7
Description

Used to get the information of the current audio data ready to transfer. (Similar operation to
DAT_I MACGEI NFO

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWOC BADPROTOCOL
TWCC_SEQERROR

See Also

None

7-8 TWAIN 2.4 Specification

DG_AUDIO / DAT_AUDIONATIVEXFER / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG AUDI O DAT_AUDI ONATI VEXFER, MSG_CET,
pHandl e) ;
pHandl e = A pointer to a variable of type Handle
On Windows - This is a handle variable to WAV data located in memory.
On Macintosh - This is a handle to AIFF data.
On Linux - This is a handle to WAV data.
Valid States
6 (transitions to state 7)
Description

(Similar operation to DAT_| MAGENATI VEXFER).

Causes the transfer of an audioZs data from the Source to the application, via the Native transfer
mechanism, to begin. The resulting data is stored in main memory in a single block. The data is
stored in AIFF format on the Macintosh and as a WAV format under Microsoft Windows. The
size of the audio snippet that can be transferred is limited to the size of the memory block that can
be allocated by the Source.

Note: This is the default transfer mechanism. All Sources support this mechanism if DG_AUDI O
is supported. The Source will use this mechanism unless the application explicitly
negotiates a different transfer mechanism with ACAP_XFERMECH.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWOC_ BADPROTOCOL.
TWCC_SEQERROR - not state 6.

See Also

ACAP_XFERVECH

TWAIN 2.4 Specification 7-9

Chapter 7

DG_CONTROL / DAT_CALLBACK / MSG_INVOKE_CALLBACK

MSG_| NVOKE_CALLBACK is deprecated. It was added for Mac OS X, TWAIN 2.0 DS should use
DAT_NULL. Refer to the TWAIN 1.9 spec for implementation.

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_CALLBACK,
M5G_| NVOKE_CALLBACK, (TW_MEMREF) &cal | back) ;

Valid States
4,5, 7 (depending on the message)

Description

This triplet is sent by the DS to the DSM, which in turn calls the application’s registered callback
function. The last argument is a pointer to an initialized TW_CALLBACK structure, which
contains the message to be processed.

The TW_CALLBACK structure should be initialized as follows:

Msg Initializedtoanyvalid DG CONTROL / DAT_NULL message.

The message specified will be processed in the same manner as the DAT_NULL mechanism
employed by the Windows version. These are:

MSG_XFERREADY
MSG_CLOSEDSREQ
MSG_CLOSEDSOK

MSG_DEVI CEEVENT
MSG_I NVOKE_CALLBACK is the only way for a Mac OS X TWAIN 1.9 DS to inform the application

of these events.

Return Codes

TWRC FAI LURE
See Also

DG _CONTROL / DAT_CALLBACK / MSG_REG STER_CALLBACK
DG _CONTROL / DAT_CALLBACK2 / MSG_REG STER CALLBACK

7-10 TWAIN 2.4 Specification

DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_CALLBACK,
MSG_REG STER CALLBACK, (TW MEMREF) &cal | back);

Valid States
4

Description

This triplet is sent to the DSM by the Application to register the application’s entry point with the
DSM, so that the DSM can use callbacks to inform the application of events generated by the DS.

The last argument is a pointer to an initialized TW CALLBACK structure. The TW CALLBACK
structure should be initialized as follows:

Cal | BackProc The callback function’s entry point, used by DSM to send
DAT_NULL/ M5G_xxx
Ref Con An application defined reference constant. Returned as

_pDat a in callback.

Note: Application should refrain from assigning a pointer to RefCon if they want the same
behavior in 32bit and 64bit. RefCon is not large enough to hold a pointer as 64bit.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADVALUE

See Also

DG _CONTROL / DAT_CALLBACK / MsSG_I NVOKE_CALLBACK
DG _CONTROL / DAT_CALLBACK2 / MSG_REG STER CALLBACK

TWAIN 2.4 Specification 7-11

Chapter 7

DG_CONTROL / DAT_CALLBACK2 / MSG_REGISTER_CALLBACK

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_CALLBACK2,
MSG_REGQ STER_CALLBACK, (TW MEMREF) &cal | back);
cal | back = A pointer toa TW CALLBACK2 structure
Valid States
4
Description

This triplet is sent to the DSM by the Application to register the application’s entry point with the
DSM, so that the DSM can use callbacks to inform the application of events generated by the DS.

The last argument is a pointer to an initialized TW CALLBACK2 structure. The TW CALLBACK2
structure should be initialized as follows:

Cal | BackProc The callback function’s entry point, used by
MSG_REQ STER_CALLBACK.

Ref Con An application defined reference constant.

Return Codes
TWRC FAI LURE

See Also
DG CONTROL / DAT_CALLBACK / MG | NVOKE CALLBACK

7-12 TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG _GET,
pCapability);

pCapabi | i ty = A pointer to a TW CAPABI LI TY structure.

Valid States

4 through 7

Description

Returns the Source’s Current, Default and Available Values for a specified capability.

These values reflect previous M5G_SET or M5SG_SETCONSTRAI NT operations on the capability, or
Source’s automatic changes. (See M5G_SET).

Note: This operation does not change the Current or Available Values of the capability.

Application
Set the pCapabi | i t y fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier

pCapabi | i ty->ConType = TWON_DONTCARE16
pCapabi | i ty->hCont ai ner = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MBG_GET:

* As the first step in negotiation of a capability’s Available Values.
e To check the results if a MSG_SET returns TWRC CHECKSTATUS.

e To check the Available, Current and Default Values with one command.

This operation may fail for a low memory condition. Either recover from a TWCC_L OWWEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you're sure you've implemented all the capabilities that you're required to), disregard the
operation, but return TWRC_FAI LURE with TWCC_CAPUNSUPPORTED.

TWAIN 2.4 Specification 7-13

Chapter 7

7-14

If you support the capability, fill in the fields listed below and allocate the container structure and
place its handle into pCapabi | i t y->hCont ai ner. The container should be referenced by a
“handle” of type TW HANDLE.

Fill the fields in pCapabi | i t y as follows:

pCapabil i ty->ConType = TWON_ARRAY,
TWON_ONEVALUE,

TWON_ENUMERATI ON, or

TWON_RANGE

pCapabi | i t y->hCont ai ner = TW HANDLE referencing a container of ConType

Set ConType to the container type your Source uses for this capability. For the container type of
TWON_ONEVAL UE provide the Current Value. For the container type of TWON_ARRAY provide the
Available Values. For container types TWON_ENUMERATI ONand TWON_RANGE provide the
Current, Default and Available Values.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made, return

TWRC_FAI LURE with TWCC_LOAVEMORY to the application and set the

pCapabi | i t y->hCont ai ner handle to NULL.

Note: The Sour ce must be able to respond to an inquiry about any of its capabilities at any time
that the Sour ce is open.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADCAP /* Unknown capability--Source does not recognize */
/[* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */
TWCC CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer nust use this instead of */
/* using TWCC BADCAP. */

TWCC CAPBADOPERATI ON /* COperation not supported by capability.*/
/* Sources 1.6 and newer nust use this */
/* instead of using TWCC BADCAP.

TWCC CAPSEQERROR [* Capability has a dependency on another */
[* capability. Sources 1.6 and newer must */
/* use this instead of using TWCC BADCAP. */

TWCC BADDEST /* No such Source in session with application */
TWCC L OAWVEMORY /* Not enough nenory to conplete the operation*/
TWCC_SEQERROR /* Operation invoked in invalid state */

TWAIN 2.4 Specification

See Also

DG CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT
DG CONTROL / DAT_CAPABI LI TY / MSG GETDEFAULT
DG CONTROL / DAT_CAPABI LITY / MSG_RESET

DG CONTROL / DAT_CAPABILITY / MSG_SET

DG CONTROL / DAT_CAPABI LI TY / MSG_SETCONSTRAI NT

“Capability Containers” on page 2-15 and TW ONEVALUE, TW ENUMERATI ON, TW RANGE,
TW ARRAY.

“Capability Constants” on page 8-75 (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities “The Capability Listings” on page 10-12 (in Chapter 10, "Capabilities")

TWAIN 2.4 Specification 7-15

Chapter 7

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG GETCURRENT,
pCapability);
pCapabi | i ty = A pointer to a TW CAPABI LI TY structure.
Valid States
4 through 7
Description
Returns the Source’s Current Value for the specified capability.
The Current Value reflects previous M5G_SET operations on the capability, or Source’s automatic
changes. (See M5G_SET).
Note: This operation does not change the Current Values of the capability.
Application

Set the pCapabi | i t y fields as follows:

pCapabi | i ty->Cap = the CAP_xxxXx or ACAP_xxxX or | CAP_xxxx identifier
pCapabi |l i ty->ConType = TWON_DONTCARE16
pCapabi | i ty->hCont ai ner = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use M5G_GETCURRENT:

* To check the Source’s power-on Current Values (see Chapter 10, "Capabilities" for TWAIN-
defined defaults for each capability).

* To check just the Current Value (in place of using MSG_CET).

* In State 6 to determine the settings. They could have been set by the user (if
TW USERI NTERFACE.ShowUI = TRUE) or be the results of automatic processes used by the
Source.

This operation may fail for a low memory condition. Either recover from a TWCC_L OAWWEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

7-16 TWAIN 2.4 Specification

Source

If the application requests this operation on a capability your Source does not recognize (and
you're sure you've implemented all the capabilities that you're required to), disregard the
operation, but return TWRC_FAI LURE with TWCC CAPUNSUPPORTED.

If you support the capability, fill in the fields listed below and allocate the container structure and
place its handle into pCapabi | i t y->hCont ai ner. The container should be referenced by a

“handle” of type TW HANDLE.

Fill the fields in pCapabi | i t y as follows:

pCapability->ConType =
pCapabi | i t y- >hCont ai ner

TWON_ARRAY or TWON_ONEVALUE
TW HANDLE referencing a contai ner of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made, return

TWRC_FAI LURE with TWCC_LOAVEMORY to the application and set the

pCapabi | i t y->hCont ai ner handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any time

that the Source is open.

Return Codes
TWRC SUCCESS
TWRC FAI LURE

TWCC_BADCAP /*
/ *
/ *
/ *

TWCC_CAPUNSUPPORTED

TWCC_CAPBADOPERATI ON

TWOC_CAPSEQERROR

TWCC_BADDEST

TWCC_LOAVEMORY

TWOC_SEQERROR

TWAIN 2.4 Specification

Unknown capability--Source does not recogni ze */
this capability. This code should not be used */

by
to

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

sources after 1.6. Applications still need */
test for it for backward conpatibility. *l
Capability not supported by source. Sources*/
1.6 and newer nust use this instead of */
usi ng TWCC_BADCAP. */
Operation not supported by capability. */
Sources 1.6 and newer nust use this instead*/
of using TWCC BADCAP. */
Capabi lity has a dependency on anot her *l
capability. Sources 1.6 and newer nust use */
this instead of using TWCC BADCAP. *l
No such Source in-session with */
application */
Not enough nenory to conplete the */
operation */
Operation invoked in invalid state. */

7-17

Chapter 7

See Also

DG _CONTROL / DAT_CAPABI LI TY / MSG_GET

DG _CONTROL / DAT_CAPABI LI TY / MSG _GETDEFAULT

DG _CONTROL / DAT_CAPABI LITY / MSG_RESET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SETCONSTRAI NT

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities").

7-18 TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABI LI TY, MSG GETDEFAULT,
pCapability);

pCapabi l ity = A pointer to a TW CAPABI LI TY structure.

Valid States

4 through 7

Description
Returns the Source’s Default Value. This is the Source’s preferred default value.

The Source’s Default Value cannot be changed.

Application

Set the pCapabi | i ty fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapabil i ty->ConType = TWON_DONTCARE16
pCapabi |l i ty->hContai ner = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MBG_GETDEFAULT:

* To check the Source’s preferred Values. Using the Source’s preferred default as the Current
Value may increase performance in some Sources.

This operation may fail for a low memory condition. Either recover from a TWCC_L OAWWEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and you
are sure you have implemented all the capabilities that you're required to), disregard the
operation, but return TWRC_FAI LURE with TWCC CAPUNSUPPORTED.

If you support the capability, fill in the fields listed below and allocate the container structure and
place its handle into pCapabi | i t y->hCont ai ner. The container should be referenced by a
“handle” of type TW HANDLE.

e Fill the fields in pCapabi | i t y as follows:
pCapability->ConType = TWON_ARRAY or TWON ONEVALUE
pCapabi |l i ty->hCont ai ner = TW HANDLE referencing a contai ner of ConType

Set ConType to the container type that matches for this capability. Fill the fields in the container
with the Default Value of this capability.

TWAIN 2.4 Specification 7-19

Chapter 7

7-20

The Default Value is the preferred value for the Source. This value is used as the power-on value
for capabilities if TWAIN does not specify a default.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made return

TWRC_FAI LURE with TWCC_LOWVEMORY to the application and set the

pCapabi | i t y->hCont ai ner handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any time
that the Source is open.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/[* to test for it for backward conpatibility. */
TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer mnust use this instead of */
/* using TWCC_BADCAP. */
TWCC_CAPBADOPERATI ON /* Operation not supported by capability. */
/* Sources 1.6 and newer mnust use this instead*/

/* of using TWCC BADCAP.
TWCC_CAPSEQERRCR [* Capability has a dependency on anot her *l
[* capability. Sources 1.6 and newer nust use */
[* this instead of using TWCC BADCAP. *l
TWCC_BADDEST /* No such Source in-session with */
[* application */
TWCC_LOWEMORY /* Not enough nmenory to conplete the */
/* operation */
TWCC_SEQERRCR /* Qperation invoked in invalid state */

See Also

DG _CONTROL / DAT_CAPABI LI TY / MSG_GET

DG _CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT
DG _CONTROL / DAT_CAPABI LITY / MSG_RESET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SETCONSTRAI NT

Capability Constants (in Chapter 10, "Capabilities")

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")

TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GETHELP

Call
DSM Entry(pOrigin, NULL, DG _CONTRCL, DAT_CAPABILITY, MSG_GETHELP,
pTwCapabi lity);
pTwCapabi ity = A pointer to a TW CAPABI LI TY structure.
Valid States
4
Description
Returns help text suitable for use in a GUL for instance: “Specify the amount of detail in an image.
Higher values result in more detail.” for | CAP_XRESOLUTI ON.
Application
The Application frees the handle.
Source

The Source returns a TW ONEVALUE container with a TWI'Y_HANDLE item type. The handle points
to a string. The encoding of the string is determined by the

TW I DENTI TY. TW VERSI ON. Language reported back by the Source, unless overridden by
CAP_LANGUAGE.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADPROTOCOL
TWCC_CAPUNSUPPORTED

See Also
DG CONTROL / DAT_CAPABI LI TY / MSG GETLABEL

TWAIN 2.4 Specification 7-21

Chapter 7

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABEL

7-22

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_ CAPABILITY, MSG GETLABEL,
pTwCapabi lity);
pTwCapabi ity = A pointer to a TW CAPABI LI TY structure.
Valid States
4
Description
Returns a | abel suitable for use ina GJ, for instance “Resolution:” for
| CAP_XRESOLUTI ON.
Application
The Application frees the handle.
Source

The Source returns a TW ONEVALUE container with a TWI'Y_HANDLE item type. The handle points
to a string. The encoding of the string is determined by the

TW. I DENTI TY. TW VERSI ON. Language reported back by the Source, unless overridden by
CAP_LANGUAGE.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL
TWCC_CAPUNSUPPORTED

See Also
DG CONTROL / DAT_CAPABI LI TY / MSG GETHELP

TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABELENUM

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_CAPABI LITY, MSG GETLABELENUM
pTwCapabi lity);
pTwCapability = A pointer to a TWCAPABI LI TY structure.
Valid States
4
Description
Return all of the labels for a capability of type TW ARRAY or TW ENUMERATI ON, for example “US
Letter” for | CAP_SUPPORTEDSI ZES' TWSS_USLETTER
Application
The Application receives a TW ARRAY with a TW STR255 type. Each index in the array
corresponds to the same index of a TW ARRAY or a TW ENUMERATI ONreturned by a MSG_CET for
that same capability.
For example, if | CAP_SUPPORTEDSI ZES returns the following for MSG_CET:
pt wenuner ati on->ltenifype = TWIY_Ul NT16
pt wenuner ati on->Num tens = 3
pt wenumner ati on->Currentlndex = 0
pt wenumer ati on- >Def aul tI ndex = 0
((TW.UI NT16*) &t wenuner ati on->ltenlist)[0] = TWSS_USLETTER
((TW.UI NT16*) &t wenunerati on->ltenlist)[1] = TWSS_A4LEDCGER
((TW.UI NT16*) &t wenunerati on->ltenli st)[2] = TWSS_USEXECUTI VE
It should return something like the following for MSG_GETLABEL ENUM
ptwarray->ltenlype = TWY_STR255
ptwarray ->Numtens = 3
((char*) &twarray->ltenLi st)[0*si zeof (TW STR255)] is “US Letter”
((char*) &ptwarray->ltenlList)[1*si zeof (TWSTR255)] is “Ad Letter”
((char*)&ptwarray->ltenList)[2*si zeof (TW STR255)] is “US Executive”
Source

The Source returns a TW ARRAY container with a TW STR255 item type. The string data is UTF-8
encoded. The language is determined by the TW | DENTI TY. TW VERSI ON. Language reported
back by the Source, unless overridden by CAP_LANGUAGE.

This feature is only supported for capabilities that return TW ARRAY or TW ENUMERATI ON for

MSG_GET. Other capabilities (like TW RANGE or TW ONEVALUE) return TWRC_FAI LURE /
TWCC_BADPROTOCOL.

TWAIN 2.4 Specification 7-23

Chapter 7

Return Codes
TWRC_SUCCESS
TWRC FAI LURE

TWCC_CAPUNSUPPORTED
TWCC_BADPROTOCOL

See Also
DG CONTROL / DAT_CAPABI LITY / MSG _GETLABEL

7-24 TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT

Call
DSM Entry(pCOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MG QUERYSUPPCRT,
pCapability);
pCapabi l ity = A pointer to a TW CAPABI LI TY structure.
Valid States
4 through 7
Description
Returns the Source’s support status of this capability.
Application
Set the pCapabi | i t y fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapability->ConType = TWON ONEVALUE
pCapabi |l i ty->hCont ai ner = NULL
The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.
Use M5G_QUERYSUPPORT:
* To check the whether the Source supports a particular operation on the capability.
This operation may fail for a low memory condition. Either recover from a TWCC_L OAWWEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.
Source

Fill the fields in pCapabi | i t y as follows:

pCapability->ConType = TWON ONEVALUE

pCapabil i ty->hContai ner = TW HANDLE referencing a container of type
TW ONEVAL UE.

Fill the fields in TW ONEVALUE as follows:

1. Itemlype = TWIY_I NT32;

2. Item = Bit pattern representing the set of operations that are supported by the Data Source on
this capability (TWQC_GET, TWQC SET, TWQC GETCURRENT, TWQC GETDEFAULT,
TWQC_RESET, TWQC SETCONSTRAI NT);

TWAIN 2.4 Specification 7-25

Chapter 7

7-26

If the application requests this operation on a capability your Source does not recognize (and
you're sure you've implemented all the capabilities that you're required to), do not disregard the
operation, but fill out the TWON_ONEVAL UE container with a value of zero(0) for the Item field,
indicating no support for any of the DAT CAPABI LI TY operations, and return a status of
TWRC_SUCCESS.

If the capability will currently return TWRC_FAI LURE / TWCC_CAPSEQERROR, because its
availability depends on that of other capabilities, then fill out the TWON_ONEVAL UE container with
a value of zero (0) for the Item field, indicating no support for any of the DAT CAPABI LI TY
operations, and return a status of TWRC_SUCCESS.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made return

TWRC_FAI LURE with TWCC_LOAVEMORY to the application and set the

pCapabi | i t y->hCont ai ner handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any time
that the Source is open.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOWEMORY /* Not enough nmenory to conplete the */
/* operation */

See Also

DG CONTROL / DAT_CAPABI LI TY / MSG GET

DG CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT

DG CONTROL / DAT_CAPABI LITY / MSG_RESET

DG CONTROL / DAT_CAPABI LI TY / MSG_SET

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Container: TW ONEVALUE (in Chapter 8, "Data Types and Data Structures").

Listing of all capabilities (in Chapter 10, "Capabilities")

TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_RESET

Call
DSM Entry(pCrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG RESET,
pCapability);
pCapabi l ity = A pointer to a TW CAPABI LI TY structure.
Valid States
4 (when indicated by M5G_QUERYSUPPCRT)
5, 6, 7 (when the capability appears in the CAP_EXTENDEDCAPS array, and when indicated by
MSG_QUERYSUPPORT)
Description
Change the Current Value of the specified capability back to the M5SG_RESET/M5G_RESETALL
value and return the new Current Value.
These values are listed in capability section (in Chapter 10, "Capabilities"). If “no default” is
specified, the Source uses it preferred default value (returned from MSG_GETDEFAULT).
Application
Set the pCapabi | i t y fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or | CAP_xxxx identifier
pCapability->ConType = TWON DONTCARE16
pCapabi |l i ty->hCont ai ner = NULL
The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.
Use M5G_RESET:
* To set the Current Value of the specified capability a known default value, and to remove any
constraints from the allowed values supported by the Source.
This operation may fail for a low memory condition. Either recover from a TWCC_L OAWEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.
Source

If the application requests this operation on a capability your Source does not recognize (and
you're sure you've implemented all the capabilities that you're required to), disregard the
operation, but return TWRC_FAI LURE with TWCC CAPUNSUPPORTED.

TWAIN 2.4 Specification 7-27

Chapter 7

7-28

Return

If you support the capability, reset the Current Value of the capability back to its known default
value. This value must also match the MSG_RESET/MSG_RESETALL value listed in capability
section of Chapter 10, "Capabilities".

Also return the new Current Value (just like in a M5SG_GETCURRENT). Fill in the fields listed below
and allocate the container structure and place its handle into pCapabi | i t y->hCont ai ner. The
container should be referenced by a “handle” of type TW HANDLE.

Fill the fields in pCapabi | i t y as follows:

pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE
pCapabi | i ty->hCont ai ner = TW HANDLE referencing a container of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability (after resetting it as stated above).

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made return

TWRC_FAI LURE with TWCC_LOAVEMORY to the application and set the

pCapabi | i t y->hCont ai ner handle to NULL.

Note that this operation is only valid in State 4, unless permitted by the presence of the capability
in the CAP_EXTENDEDCAPS array. Any attempt to invoke it in any other state should be
disregarded, though the Source should return TWRC_FAI LURE with TWCC_SEQERROR

Codes
TWRC SUCCESS
TWRC FAI LURE

TWCC BADCAP /* Unknown capability--Source does not recognize */
/[* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */

TWCC CAPUNSUPPORTED /* Capability not supported by source Sources*/
/* 1.6 and newer nust use this instead of */
/* using TWCC _BADCAP. */

TWCC CAPBADOPERATI ON /* Operation not supported by capability. */
/* Sources 1.6 and newer mnust use this instead*/
[* of using TWCC BADCAP.

TWCC CAPSEQERROR /* Capability has a dependency on anot her */
[* capability. Sources 1.6 and newer nust use */
/* this instead of using TWCC BADCAP. */
TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC L OAWVEMORY /* Not enough nenory to conplete the */
/* operation */

TWCC_SEQERROR /* Operation invoked in invalid state */

TWAIN 2.4 Specification

See Also

DG _CONTROL / DAT_CAPABI LI TY / MSG_GET

DG _CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT
DG _CONTROL / DAT_CAPABI LI TY / MSG _GETDEFAULT
DG _CONTROL / DAT_CAPABI LI TY / MSG_SET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SETCONSTRAI NT

“Capability Constants” on page 8-75.

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities".)

TWAIN 2.4 Specification 7-29

Chapter 7

DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABILITY, MSG RESETALL,
pCapability);

pCapabi | i ty = A pointer to a TW CAPABI LI TY structure.

Valid States

4 only

Description

This command resets all current values back to the MSG_RESET/MSG_RESETALL values. All
current values are set to their known default value. These values are listed in the capabilities
section (in Chapter 10, "Capabilities"). All constraints are removed for all of the negotiable
capabilities supported by the driver.

Application

Set the pCapabi | i t y fields as follows:

pCapabi | i ty->Cap = CAP_SUPPORTEDCAPS
pCapabi li ty->ConType = TWON_DONTCARE16
pCapabi | i ty->hCont ai ner = NULL

The Source will not allocate any memory as a part of this call. It will only return a status to
indicate success or failure. If this call succeeds then the application must assume that all
capabilities have been reset, as well as any DAT structures that are associated with capabilities
(such as DAT_| MAGELAYQUT or DAT_JPEGCOVPRESSI ON).

Source

The TW CAPABI LI TY structure has no special meaning for this call. It is not required that the
application set the Cap field to CAP_SUPPORTEDCAPS, so do not test for it. Do not change the
structure in any way. Do not allocate any memory for this call.

When this call is complete the driver should be restored to factory defaults, matching the settings
it had when first installed on the user’s machine.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADCAP /* Unknown capability--Source does not */
/* recogni ze this capability. This code */
/* should not be used by sources after */
/* 1.6. Applications still need to test */
/* for it for backward conpatibility. */

7-30 TWAIN 2.4 Specification

TWCC_CAPUNSUPPORTED

TWCC_CAPBADOPERATI ON

TWOC_CAPSEQERROR

TWCC_BADDEST

TWCC_LOAVEMORY

TWOC_SEQERROR

See Also

DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL

~ O~~~ ~— ~—

/*
/*
/*
/*

/*
/*

/*
/*

/*

[* Capability not supported by */
/* source. Sources 1.6 and newer */
/* must use this instead of */
/* using TWCC BADCAP. */

/* Operation not supported by */
/* capability. Sources 1.6 and newer */
/* must use this instead of using */

[* TWCC_BADCAP. */

Capability has a dependency on anot her */

capability. Sources 1.6 and newer */
must use this instead of using */
TWCC_BADCAP. */

No such Source in-session with */
application */

Not enough nenory to conplete the */
operation */

Operation invoked in invalid state */

DAT_CAPABI LI TY / MSG_GET
DAT_CAPABI LI TY / M5G_GETCURRENT
DAT_CAPABI LI TY / MSG_GETDEFAULT
DAT_CAPABI LI TY / MSG_RESET
DAT_CAPABI LI TY / MSG_SET
DAT_CAPABI LI TY / MSG_SETCONSTRAI NT

Capability Constants (in Chapter 10, "Capabilities")

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")

TWAIN 2.4 Specification

7-31

Chapter 7

DG_CONTROL / DAT_CAPABILITY / MSG_SET

7-32

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPAB ILITY, MSG_SET,
pCapability);
pCapabi | i ty = A pointer to a TW CAPABI LI TY structure.

Valid States
4 (when indicated by M5G_QUERYSUPPCRT)
5, 6, 7 (when the capability appears in the CAP_EXTENDEDCAPS array, and when indicated by
M5G_QUERYSUPPORT)

Description
Changes the Current Value of the capability to that specified by the application. As of TWAIN 2.2
MSG_SET only modifies the Current Value of the specified capability, constraints cannot be
changed with M5G_SET. The original functionality of M5G_SET has been addressed in
MSG_SETCONSTRAI NT for TWAIN 2.2 Sources and higher. (Please refer to DG_CONTRCL /
DAT_CAPABI LI TY / MSG_SETCONSTRAI NT.)

Application

An application will use the setting of a capability’s Current and Available Values differently
depending on how the Source was enabled (DG_CONTROL / DAT_USERI NTERFACE /
MSG_ENABLEDS). As of TWAIN 2.2 M5G_SET can only change the Current Value, any attempt to
change Default or Constraint Values should return TWRC_CHECKSTATUS with only the Current
Value changed.

If TW USERI NTERFACE.ShowJl = TRUE

* In State 4, set the Current Value to be displayed to the user as the current value. This value will
be used for acquiring the image unless changed by the user or an automatic process (such as
| CAP_AUTOBRI GHT).

* In State 6, get the Current Value which was chosen by the user or automatic process. This is the
setting used in the upcoming transfer.

If TW USERI NTERFACE. ShowUdl = FALSE

* In State 4, set the Current Value to the setting that will be used to acquire images (unless
automatic settings are set to TRUE, for example: | CAP_AUTOBRI GHT).

* In State 6, get the Current Value which was chosen by any automatic processes. This is the
setting used in the upcoming transfer.

If possible, use the same container type in a MSG_SET that the Source returned from a M5SG_GET.
Allocate the container structure. This is where you will place the value(s) you wish to have the
Source set. Store the handle into pCapabi | i t y->hCont ai ner. The container must be
referenced by a “handle” of type TW HANDLE.

TWAIN 2.4 Specification

Set the following:

pCapabi | i ty- >ConType = TWON_ARRAY, TWON_ONEVALUE, TWON_ENUMERATI ON, or
TWON_RANGE

pCapabi | i ty->Cap = CAP_xxxXx designator of capability of interest
pCapabi | i ty->hCont ai ner = TW HANDLE referencing a container of ConType

Place the value(s) that you wish the Source to use in the container. If successful, these values will
supersede any previous negotiations for this capability.

The application must free the container it allocated when the operation is complete and the
application no longer needs to maintain the information.

Source

Return TWRC_FAI LURE / TWCC_CAPUNSUPPORTED:

¢ If the application requests this operation on a capability your Source does not recognize (and
you're sure you've implemented all the capabilities that you're required to). Disregard the
operation.

Return TWRC_FAI LURE / TWCC_BADVAL UE:

* If the application requests that a value be set that lies outside the supported range of values for
the capability (smaller than your minimum value or larger than your maximum value). Set the
value to that which most closely approximates the requested value.

* If the application sends a container that you do not support, or do not support in a M5G_SET.

Return TWRC_CHECKSTATUS:

¢ If the application requests one or more values that lie within the supported range of values (but
that value does not exactly match one of the supported values), set the value to the nearest
supported value. The application should then do a M5G_CET to check these values.

Return TWRC_FAI LURE / TWCC_SEQERROR:

* If the application sends M5G_SET in State 5, 6 or 7 and the capability is not allowed by
CAP_EXTENDEDCAPS.

If the request is acceptable, use the container structure referenced by
pCapabi | i t y->hCont ai ner to set the Current value for the capability.

Return TWRC_FAI LURE / TWCC_CAPSEQERROR:

* If the capability cannot be modified due to a setting for a related capability.
Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS [/* Capability value(s) could not be matched exactly */
TWRC_FAI LURE

TWAIN 2.4 Specification 7-33

Chapter 7

TWCC_BADCAP /* Source does not recognize this capability. This */
/* code should not be used by sources after 1.6. */

/* Applications still need to test it for backward */

/* conpatibility. */
TWCC_CAPUNSUPPORTED /* Capability not supported by source. */
/* Sources 1.6 and newer mnust use this. */

TWCC_CAPBADOPERATI ON /* Operation not supported by capability. */
/* Sources 1.6 and newer mnust use this. */

TWCC _CAPSEQERROR /* Capability has a dependency on anot her */
/* capability Sources 1.6 and newer mnust use */

[* this. */
TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADVALUE /* Val ue outside Source’s range for the capability */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG _CONTROL / DAT_CAPABI LITY / MSG_GET

DG _CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT
DG _CONTROL / DAT_CAPABI LITY / MSG _GETDEFAULT
DG _CONTROL / DAT_CAPABI LITY / MSG_RESET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SETCONSTRAI NT

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")

7-34 TWAIN 2.4 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_CAPABI LI TY, MSG_SETCONSTRAI NT,
pCapability);
pCapabi | i ty = A pointer to a TW CAPABI LI TY structure.

Valid States
4 (when indicated by M5G_QUERYSUPPCRT)
5, 6, 7 (when the capability appears in the CAP_EXTENDEDCAPS array, and when indicated by
MSG_QUERYSUPPORT)

Description
Changes the Current Value(s) and Available Value(s) of the specified capability to those specified
by the application.
Current Values are set when the container is a TW ONEVALUE or TW ARRAY. Available and
Current Values are set when the container is a TW_ENUVERATI ON, TW ARRAY or TW RANGE.
Note: Sources are not required to allow restriction of their Available Values, however, this is

strongly recommended.
Application

An application will use the setting of a capability’s Available Values when the Source was enabled
(DG_CONTROL / DAT_USERI NTERFACE / M5G_ENABLEDS) with TW USERI NTERFACE.ShowUl
= TRUE

* In State 4, set the Current Value(s) to be displayed to the user as the current value. This value
will be used for acquiring the image unless changed by the user or an automatic process (such
as | CAP_AUTCBRI GHT).

* In State 4, set the Available Values to restrict the settings displayed to the user and available for
use by the Source.

* In State 6, get the Current Value(s) which was chosen by the user or automatic process. This is
the setting used in the upcoming transfer.

Store the handle into pCapabi | i t y- >hCont ai ner . The container must be referenced by a
“handle” of type TW HANDLE.

Set the following:

pCapabi | i ty- >ConType = TWON_ARRAY, TWON_ONEVALUE, TWON ENUMERATI ON, or
TWON_RANGE
pCapabi | i ty->Cap = CAP_xxxx designator of capability of interest

pCapabi | i ty->hCont ai ner = TW HANDLE referencing a container of ConType

TWAIN 2.4 Specification 7-35

Chapter 7

Place the value(s) that you wish the Source to use in the container. If successful, these values will
supersede any previous negotiations for this capability.

The application must free the container it allocated when the operation is complete and the
application no longer needs to maintain the information.

Source

Return TWRC_FAI LURE / TWCC_CAPUNSUPPORTED:

* If the application requests this operation on a capability your Source does not recognize (and
you're sure you've implemented all the capabilities that you're required to). Disregard the
operation.

Return TWRC_FAI LURE / TWCC_BADVALUE:

¢ If the application requests that all values be set which are outside the supported values for the
capability.

* If the application sends a container that you do not support, or do not support in a
MSG_SETCONSTRAI NT.

* If the application attempts to set the Available Values and the Source does not support
restriction of the capability’s Available Values.

Returns TWRC _CHECKSTATUS:

* If the application requests one or more values that are supported (but all values do not exactly
match one of the supported values). The application should then do a M5G_CET to check these
values.

Return TWRC_FAI LURE / TWCC_SEQERROR:

* If the application sends MSG_SETCONSTRAI NT in State 5, 6 or 7 and the capability is not
allowed by CAP_EXTENDEDCAPS.

Return TWRC_FAI LURE / TWCC_CAPSEQERROR:
* If the capability cannot be modified due to a setting for a related capability.

If the request is acceptable, use the container structure referenced by
pCapabi | i t y->hCont ai ner to set the Available Values for the capability. If the container type
is TWON_ONEVAL UE set the Current Value for the capability to that value.

If the container type is TWON_RANGE, TWON_ARRAY or TWON_ENUVMERATI ON, set the Current
Value for the capability to that value and optionally limit the Available Values for the capability to
match those provided by the application, masking all other internal values so that the user cannot
select them.

Important: Sources should accommodate requests to limit Available Values. In the interest of
adoptability for the breadth of Source manufacturers, such accommodation is not
required. It is recommended, however, that the Sources do so, and that the Source’s user
interface be modified (from its power-on state, and when the user interface is raised) to
reflect any limitation of choices implied by the newly negotiated settings.

7-36 TWAIN 2.4 Specification

Note: For example, if an application can only accept black and white image data, it tells the
Source of this limitation by doing a MSG_SET on | CAP_PI XELTYPE with a
TW ENUMERATI ON or TW RANGE container containing only TWPT_BW(black and white).

Note: If the Source disregards this negotiated value and fails to modify its user interface, the
user may select to acquire a color image. Either the user’s selection would fail (for reasons
unclear to the user) or the transfer would fail (also for unclear reasons for the user). The
Source should strive to prevent such situations.

Return Codes
TWRC_SUCCESS
TWRC_CHECKSTATUS [/* Capability value(s) could not be matched exactly */
TWRC_FAI LURE

TWCC_CAPUNSUPPORTED /* Capability not supported by source. */

TWCC_CAPBADOPERATI ON /* Operation not supported by capability. */

TWCC_CAPSEQERROR [* Capability has a dependency on anot her */
/* capability. */

TWCC_BADDEST /* No such Source in-session with application */

TWCC_BADVALUE /* Value(s) outside Source's range for capability */

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG _CONTROL / DAT_CAPABI LITY / MSG_GET

DG _CONTROL / DAT_CAPABI LI TY / MSG_GETCURRENT
DG _CONTROL / DAT_CAPABI LI TY / MSG _GETDEFAULT
DG _CONTROL / DAT_CAPABI LITY / MSG_RESET

DG _CONTROL / DAT_CAPABI LI TY / MSG_SET

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW ONEVALUE, TW ENUMERATI ON, TW RANGE, TW ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")

TWAIN 2.4 Specification 7-37

Chapter 7

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET

7-38

Call
DSM Ent ry(
pOrigin, pDest, DG CONTROL, DAT_CUSTOVDSDATA,
MSG_GET, pCustonDat a
)
pCustomData = A pointer to a TW CUSTOVDSDATA structure.
Valid States
4 only
Description
This operation is used by the application to query the data source for its current settings, e.g. DPI,
paper size, color format. The sources settings will be returned in a TW CUSTOVDSDATA structure.
The actual format of the data in this structure is data source dependent and not defined by
TWAIN.
Application
pDest references the sources identity structure. pCust onDat a points to a TW CUSTOVDSDATA
structure.
Source

Fills the pCust onDat a pointer with source specific settings. If supported,
CAP_ENABLEDSUI ONLY and CAP_CUSTOVDSDATA are required.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR

See Also

Capability CAP_CUSTOVDSDATA

TWAIN 2.4 Specification

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_ CUSTOVDSDATA,
MSG_SET, pCustonData);
pCustonData = A pointer to a TW CUSTOVDSDATA structure.

Valid States
4 only

Description
This operation is used by the application to set the current settings for a data source to a previous
state as defined by the data contained in the pCust onDat a data structure. The actual format of
the data in this structure is data source dependent and not defined by TWAIN.

Application
pDest references the sources identity structure. pCust onDat a points to a TW CUSTOVDSDATA
structure.

Source

Changes its current settings to the values specified in the pCust onDat a structure.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC_SEQERROR

See Also

Capability CAP_CUSTOVDSDATA

TWAIN 2.4 Specification 7-39

Chapter 7

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG CONTRCL, DAT_DEVI CEEVENT, MSG_CET,
pSour ceDevi ceEvent) ;
pSour ceDevi ceEvent = A pointer to a TW DEVI CEEVENT structure
Valid States
4 through 7
Description

Upon receiving a DG_CONTRCL / DAT_NULL / MSG_DEVI CEEVENT from the Sour ce, the
Application must immediately make this call to obtain the event information.

Sources must queue the data for each event so that it is available for this call.
Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

TWCC_BADPROTOCOL Capability not supported.
TWCC SEQERROR No events in the queue, or not in States 4 through 7.
See Also

DG CONTROL / DAT_NULL / MSG_DEVI CEEVENT (from Source to Application)
CAP_DEVI CEEVENT

7-40 TWAIN 2.4 Specification

DG_CONTROL / DAT_ENTRYPOINT / MSG_GET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_ENTRYPPI NT, MSG GET,
pEnt r yPoi nt) ;
pEnt r yPoi nt = A pointer to a TW ENTRYPO! NT structure
Valid States
3
Description

A TWAIN 2.0 Application examines the Source’s TW | DENTI TY . Support edG oups. If
DF_DSM is set, then it must issue this call to get the entry points for the Source Manager. If the
conditions are not met then the Source Manager will return TWRC_FAI LURE /
TWCC_BADPROTOCOL, and the Application must assume TWAIN 1.x behavior.

The Application gets five entry points in the TW ENTRYPQO NT structure:

* the DSM_Ent r y function, this may be ignored

* the DSM_MenmAl | ocat e function, used by the Application to allocate memory that will be
freed by the Source

* the DSM_MenfFr ee function, used by the Application to free memory allocated by the Source

* the DSM_Menlock function, used by the Application to get a usable pointer from a handle it
got from the Source.

* the DSM_Mennl ock function, used when the Application is done with the memory it got
from the Source. This call is usually made just before DSM_MenfFr ee.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADPROTOCOL
TWCC_SEQERROR

See Also

Identifying TWAIN 2.0 Elements, in Chapter 2, "Technical Overview".

TWAIN 2.4 Specification 7-41

Chapter 7

DG_CONTROL / DAT_ENTRYPOINT / MSG_SET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_ENTRYPO NT, MSG_SET,
pEnt r yPoi nt) ;
pEnt r yPoi nt = A pointer to a TW ENTRYPO! NT structure

Valid States

The TWAIN 2.0 Source Manager issues this command to Sources (that set DF_DS2) prior of any
other command sent by the Application. In most cases it will immediately precede the call to
DG_CONTRCL / DAT_I DENTI TY / MSG_OPEN.

The Source gets five entry points in the TW ENTRYPQO NT structure:
* the pointer to the DSM Ent r y function, used for any DAT_NULL operations such as

DG_CONTROL / DAT_NULL / MSG_XFERREADY.

* the DSM MemAl | ocat e function, used by the Source to allocate memory that will be freed by
the Application

* the DSM Menfr ee function, used by the Source to free memory allocated by the Application

* *the DSM MenlLock function, used by the Source to get a usable pointer from a handle it got
from the Application.

* the DSM Memlnl ock function, used when the Source is done with the memory it got from the
Application. This call is usually made just before DSM_Mentr ee.

Note: TWAIN 1.x Sources must continue to find and load the Source Manager DSM Ent r y on
their own.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADPROTOCOL
TWCC_SEQERROR

See Also

Identifying TWAIN 2.0 Elements, in Chapter 2, "Technical Overview".

7-42 TWAIN 2.4 Specification

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

Windows only; M5G_PROCESSEVENT is not available on Mac OS X nor Linux. Refer to Chapter
12, "Operating System Dependencies" for more information.

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_EVENT, MSG PROCESSEVENT,
pEvent);

pEvent = A pointer to a TW EVENT structure.

Valid States

5 through 7

Description

This operation supports the distribution of events from the application to Sources so that the
Source can maintain its user interface and return messages to the application. Once the
application has enabled the Source, it must immediately begin sending to the Source all events
that enter the application’s main event loop. This allows the Source to update its user interface in
real-time and to return messages to the application which cause state transitions. Even if the
application overrides the Source’s user interface, it must forward all events once the Source has
been enabled. The Source will tell the application whether or not each event belongs to the Source.

Note: Events only need to be forwarded to the Source while it is enabled.

“

The Source should be structured such that identification of the event’s “owner” is handled before
doing anything else. Further, the Source should return immediately if the Source isn’t the owner.
This convention should minimize performance concerns for the application (remember, these
events are only sent while a Source is enabled — that is, just before and just after the transfer is
taking place).

Application

Windows: Make pEvent - >pEvent point to the message structure.
Macintosh: Make pEvent - >pEvent point to an EventRecord.

Note: On return, the application should check the Return Code from DSM Entry() for
TWRC_DSEVENT or TWRC_NOTDSEVENT. If TWRC_DSEVENT is returned, the application
should not process the event—it was consumed by the Source. If TWRC_NOTDSEVENT is
returned, the application should process the event as it normally would.

With either of these Return Codes, the application should also check the pEvent ->TWvessage
and switch on the result. This is the mechanism used by the Source to notify the application that a
data transfer is ready or that it should close the Source. The Source can return one of the following
messages:

TWAIN 2.4 Specification 7-43

Chapter 7

MSG_XFERREADY /* Source has one or nore images */

/* ready to transfer */
MSG _CLOSEDSREQ /* Source wants to be cl osed, */
[* usually initiated by a */
/* user-generated event */
MSG_NULL /* no nessage for application */

Source

Process this operation immediately and return to the application immediately if the event doesn’t
belong to you. Be aware that the application will be sending thousands of messages to you.
Consider in-line processing and global flags to speed implementation.

Return Codes

TWRC DSEVENT /* Source consuned event--application */

/* should not process it */
TWRC_NOTDSEVENT /* Event belongs to application - */

/* process as usual */

TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session */

/* with application */
TWCC SEQERROR /* Operation invoked in invalid */

/* state */

See Also

DG CONTROL / DAT_NULL / MsSG_CLOSEDSREQ (from Source to Application)
DG CONTROL / DAT_NULL / MsSG _XFERREADY (from Source to Application)

Event loop information (in Chapter 7, "Operation Triplets".)

7-44 TWAIN 2.4 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FI LESYSTEM
MSG_AUTOVATI CCAPTUREDI RECTORY, pSour ceFil eSystem ;
pSourceFil eSystem = A pointer to a TWFI LESYSTEM structure
Valid States
4 only
Description

This operation selects the destination directory within the Source (camera, storage, etc), where
images captured using CAP_AUTOMATI CCAPTURE will be stored. This command only selects the
destination directory (a file of type TWFT_DI RECTCRY). The directory must exist and be
accessible to the Source. The creation of images within the directory is at the discretion of the
Source, and may result in the creation of additional sub-directories.

In all other regards the behavior of this operation is the same as DG_CONTROL /
DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY.

If the application does not specify a directory for automatic capture, then the destination of the
images is left to the discretion of the Source. A directory named /Images is recommended, but not
required.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not support ed.
TWCC DENI ED - operation denied (device not ready).
TWCC FI LENOTFOUND - speci fied | nput Name does not exist.
TWCC_SEQERROR - not state 4.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG COPY
DG CONTROL / DAT_FI LESYSTEM / MSG _CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG _GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

CAP_AUTOVATI CCAPTURE

TWAIN 2.4 Specification 7-45

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MSG_CHANGEDI RECTORY, pSourceFil eSysten);

pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure

Valid States

4 only

Description

This operation selects the current device within the Source (camera, storage, etc). If the device is a
TWFT_DOMAI N, then this command enters a directory that can contain TWFT_HOST files. If the
device is a TWFT_HOST, then this command enters a directory that can contain TWFT_DI RECTORY
files. If the device is a TWFT_DI RECTORY, then this command enters a directory that can contain
TWFT_DI RECTORY or TWFT_| MAGE files.

Sources can support part or all of the storage hierarchy that is one of the following:

/ Dorai n/ Host/ Di rect ory/
/Host/Directory/ ...
/Directory/ ...

(St orage not supported)

It is permitted to mix domain, host, and directory names in the root file system of the Source. To
help resolve any potential name conflict, Applications should set TW FI LESYSTEM >

Fi | eType to the appropriate value for the topmost file. If this is not done and there is a name
conflict, the Source’s default behavior must be to use the file of type TWFT_DI RECTORY or
TWFT_HGOST, in that order.

For example, consider two files named “abc” in the root of a Source:
/abc/ 123 (abc is a domain)
/abc/ 789 (abc is a directory)

Change directory to the first one by setting FileType to TWFT_DOMAI N, or to the second one by
setting FileType to TWFT_DI RECTCRY. The FileType for each will be discovered while browsing
the directory using DAT_GETFI LEFI RST and DAT_GETFI LENEXT. If the FileType is not specified,
then the Source must change to the “/abc/789” directory.

Example:
A Source supports two devices: / Canmer a and / Di sk. If an application changes directory to /

Camera, then it can negotiate imaging parameters and transfer images in a traditional fashion. If
an application changes directory to / Di sk/ abc/ xyz, then it cannot negotiate imaging

7-46 TWAIN 2.4 Specification

parameters (the images have already been captured); all it can do is browse the directory tree and
transfer the images it finds.

The Application sets the new current working directory by placing in the InputName field an
absolute or relative path. The Source returns the absolute path and name of the new directory in

"o

the OutputName field. The special filename dot “.” can be used to retrieve the name of the current

78

directory. The special filename dot-dot “..” can be used to change to the parent directory. Refer to
the section on File Systems for more information.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADPROTOCOL - operation not supported.
TWCC _DENI ED - operation denied (device not ready).
TWCC_FI LENOTFOUND - specified I nput Name does not exist.
TWCC _SEQERROR - not state 4.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTQVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_COPY
DG CONTROL / DAT_FI LESYSTEM / MSG_CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORVATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG_GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

TWAIN 2.4 Specification 7-47

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_COPY

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MBG_COPY, pSourceFil eSysten);
pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure
Valid States
4 only
Description

This operation copies a file or directory. Absolute and relative pathnames are supported. A file
may not be overwritten with this command. If an Application wishes to do this, it must first delete
the unwanted file and then reissue the Copy command.

The Application specifies the path and name of the entry to be copied in | nput Nane. The
Application specifies the new patch and name in Cut put Name.

It is not permitted to copy files into the root directory.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not support ed.

TWCC DENIED - file cannot be deleted (root file, or protected
by Source).

TWCC FI LEEXI STS - specified Qut put Name al ready exi sts.
TWCC FI LENOTFOUND - | nput Nane not found or CQutputNane invalid.
TWCC_SEQERROR - not state 4.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG _CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG _GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

7-48 TWAIN 2.4 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MSG_CREATEDI RECTORY, pSourceFil eSysten);

pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure

Valid States

4 only

Description

This operation creates a new directory within the current directory. Pathnames are not allowed,
only the name of the new directory can be specified.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the new directory in InputName.
On success, the Source returns the absolute path and name of the new directory in OutputName.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not supported.

TWCC DENI ED - cannot create directory in current directory,
directories nay not be created in root, or the
Source may opt to prevent the creation of new
directories in sone instances, for instance if
the new directory would be too deep in the tree.

TWCC FI LEEXI STS - the specified | nput Name al ready exists.
TWCC_SEQERROR - not state 4.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG _COPY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG _GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

TWAIN 2.4 Specification 7-49

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

7-50

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FI LESYSTEM
MSG _DELETE, pSourceFil eSysten);

pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure

Valid States

4 only

Description

This operation deletes a file or directory on the device. Pathnames are not allowed, only the name
of the file or directory to be deleted can be specified. Recursive deletion can be specified by setting
the pSour ceFi | eSyst em >Recur si ve to TRUE.

Example:

“abc” is valid.

“/Disk/abc” is not valid.

The Application specifies the name of the entry to be deleted in | nput Nare. There is no return in
Qut put Namre on success.

The Application cannot delete entries in the root directory. The Application cannot delete
directories unless they are empty.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADPROTOCOL -
TWCC_DENI ED -

TWCC_FI LENOTFOUND -
TWOC_NOTEMPTY -
TWOC_SEQERRCR -

See Also

DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL
DG_CONTROL

~ O~ — . ~— ~— ~— ~— —

by Source).

DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /
DAT_FI LESYSTEM /

operation not supported.

file cannot be deleted (root file, or protected

filenane not found.
directory is not enpty, and cannot be del eted.

not state 4.

MSG_AUTOVATI CCAPTUREDI RECTORY
MSG_CHANGEDI RECTORY

MSG_COPY

MSG_CREATEDI RECTORY
MSG_FORMATMEDI A

MSG_GETCLOSE

MSG_GETFI RSTFI LE

MSG_GETI NFO

MSG_GETNEXTFI LE

MSG_RENANE

TWAIN 2.4 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MSG_FORVATMEDI A, pSourceFil eSystem ;
pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure
Valid States
4 only
Description

This operation formats the specified storage. This operation destroys all images and sub-
directories under the selected device. Use with caution.

The Application specifies the name of the device to be deleted in | nput Nanme. There is no data
returned by this call.

The Application cannot format the root directory. Sources may opt to protect their media from
this command, so Applications must check return and condition codes.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not support ed.
TWCC DENIED - fornmat denied (root directory, or protected by Source).
TWCC FI LENOTFOUND - fil ename not found.
TWCC_SEQERROR - not state 4.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG COPY
DG CONTROL / DAT_FI LESYSTEM / MSG _CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG _GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

TWAIN 2.4 Specification 7-51

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FILESYSTEM
MSG _CGETCLOSE, pSourceFil eSystem;
pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure
Valid States
4 through 6
Description

The operation frees the Cont ext field in pSour ceFi | eSyst em

Every call to DG_CONTROL / DAT_FI LESYSTEM / M5SG_GETFI RSTFI LE must be matched by a
call to M5SG_GETCLOSE to release the Context field in the pSour ceFi | eSyst emstructure. Note
that the .Context value must be preserved between calls.

An Application may (erroneously) issue this operation at any time (even if a M5SG_GETFI RSTFI LE
has not been issued yet). Sources must protect themselves from such uses. See the section on File
Systems for more information on why and how this must be done.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not supported.
TWCC BADVALUE - . Context contains an invalid val ue.

TWCC SEQERROR - invalid context calling MSG GETCLOSE wit hout
first calling MSG GETFI RSTFI LE.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG _COPY
DG CONTROL / DAT_FI LESYSTEM / MSG _CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG _GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

7-52 TWAIN 2.4 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FI LESYSTEM
MSG_CETFI RSTFI LE, pSourceFil eSysten);

pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure

Valid States

4 through 6

Description

This operation gets the first filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETI NFO).

The Source positions the Cont ext to point to the first filename. | nput Nane is ignored.
Qut put Nane contains the absolute path and name of the file. Note that the .Cont ext value must
be preserved between calls.

Applications must not assume any ordering of the files delivered by the Source, with one
exception: if MSG_GETFI RSTFI LEis issued in the root directory, then the operation must return a
TWFT_CAMERA device.

NB: “.” and “..” are NEVER reported by this command.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not support ed.
TWCC BADVALUE - . Context contains an invalid val ue.

TWCC DENIED - file exists, but information about it has not
been returned.

TWCC _FI LENOTFOUND - directory is enpty.
TWCC_SEQERROR - cal |l ed MSG_GETFI RSTFI LE again without first calling

MSG_GETCLCSE.
See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_COPY
DG CONTROL / DAT_FI LESYSTEM / MSG_CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO

TWAIN 2.4 Specification 7-53

Chapter 7

DG _CONTROL / DAT_FI LESYSTEM / MSG_GETNEXTFI LE
DG_CONTROL / DAT_FI LESYSTEM / MSG_RENAME

7-54 TWAIN 2.4 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_FI LESYSTEM
MSG_CETI NFO, pSourceFil eSysten);
pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure
Valid States
4 through 7
Description

This operation fills the information fields in pSour ceFi | eSyst em

| nput Nane contains the absolute or relative path and filename of the requested file. Qut put Nane
returns the absolute path to the file.

Example InputName:

“abc” is valid.
“/Disk/abc” is valid.
The empty string ““ returns information about the current file (if any).

" 1

. returns information about the current directory.

“u o

. returns information about the parent directory.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not supported.

TWCC DENIED - - file exists, but information about it has not
been returned.

TWCC FI LENOTFOUND - specified file does not exist.
TWCC SEQERROR - not state 4 - 7, or no current file.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG COPY
DG CONTROL / DAT_FI LESYSTEM / MSG _CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETNEXTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

TWAIN 2.4 Specification 7-55

Chapter 7

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

Call
DSM_Entry (pOrigin, pDest, DG _CONTROL, DAT_FI LESYSTEM,
MSG_GETNEXTFI LE, pSourceFileSystem) ;
pSour ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure
Valid States
4 through 6
Description

This operation gets the next filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETI NFO).

The Source positions the Context to point to the next filename. | nput Namne is ignored.
Qut put Nane contains the absolute path and name of the file. Note that the .Context value must be
preserved between calls.

A call to MSG_GETFI RSTFI LE must be issued on a given directory before the first call to
M5G_GETNEXTFI LE.

NB: The “.” and “..” entries are NEVER reported by this command

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - operation not support ed.
TWCC BADVALUE - . Context contains an invalid val ue.

TWCC DENIED - file exists, but information about it has not
been returned.

TWCC _FI LENOTFOUND - directory is enpty.

TWCC _SEQERROR - invalid context calling MSG GETNEXTFI LE wi t hout
first calling MSG GETFI RSTFI LE.

See Also
DG CONTROL / DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG _COPY
DG CONTROL / DAT_FI LESYSTEM / MSG_CREATEDI RECTORY
DG CONTROL / DAT_FI LESYSTEM / MSG DELETE
DG CONTROL / DAT_FI LESYSTEM / MSG_FORMATMEDI A
DG CONTROL / DAT_FI LESYSTEM / MSG GETCLOSE
DG CONTROL / DAT_FI LESYSTEM / MSG _GETFI RSTFI LE
DG CONTROL / DAT_FI LESYSTEM / MSG_GETI NFO
DG CONTROL / DAT_FI LESYSTEM / MSG_RENAME

7-56 TWAIN 2.4 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Call

DSM

(Entry (pOrigin, pDest, DG _CONTROL, DAT_FI LESYSTEM,

MSG_RENAME, pSourceFileSystem) ;

pSo

ur ceFi | eSyst em= A pointer to a TW FI LESYSTEMstructure

Valid States

4 only

Description

This operation renames (and optionally moves) a file or directory. Absolute and relative path

names are supported. A file may not be overwritten with this command. If an Application wishes
to do this it must first delete the unwanted file, then issue the rename command.

The Application specifies the path and name of the entry to be renamed in InputName. The

Application specifies the new path and name in OutputName.

Filenames in the root directory cannot be moved or renamed.

Return Cod

es

TWRC_SUCCESS
TWRC_FAI LURE

See Also

DG_
DG_
DG_
DG_
DG_
DG_
DG_
DG_
DG_
DG_

TWAIN 2.4 Specification

TWCC BADPROTOCOL - operation not support ed.

TWCC DENIED - file cannot be deleted (root file, or protected
by Source).

TWCC FI LEEXI STS - specified Qut put Name al ready exi sts.

TWCC FI LENOTFOUND - | nput Nane not found or CQutputNane invalid.

TWCC_SEQERROR - not state 4.

CONTRCL
CONTRCL
CONTRCL
CONTRCL
CONTRCL
CONTRCL
CONTRCL
CONTRCL
CONTRCL
CONTRCL

DAT_FI LESYSTEM / MSG_AUTOVATI CCAPTUREDI RECTORY
DAT_FI LESYSTEM / MSG_CHANGEDI RECTORY

DAT_FI LESYSTEM / MSG_COPY

DAT_FI LESYSTEM / MSG_CREATEDI RECTORY

DAT_FI LESYSTEM / MSG DELETE

DAT_FI LESYSTEM / MSG_FORVATMEDI A

DAT_FI LESYSTEM / MSG_GETCLOSE

DAT_FI LESYSTEM / MSG_GETFI RSTFI LE

DAT_FI LESYSTEM / MSG_GETI NFO

DAT_FI LESYSTEM / MSG_GETNEXTFI LE

e e T

7-57

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Application to Source Manager)

Call

DSM Entry(pOrigin, NULL, DG CONTROL, DAT_I DENTITY, MSG_CLOSEDS,
pSour cel dentity);

pSour cel dentity = A pointer to a TW_ | DENTI TY structure.

Valid States

4 only (Transitions to State 3, if successful)

Description

When an application is finished with a Source, it must formally close the session between them
using this operation. This is necessary in case the Source only supports connection with a single
application (many desktop scanners will behave this way). A Source such as this cannot be
accessed by other applications until its current session is terminated.

Application

Reference pSour cel dent i ty to the application’s copy of the TW | DENTI TY structure for the
Source whose session is to be ended. The application needs to unload the Source from memory
after it is closed. The process for unloading the Source is similar to that used to unload the Source
Manager.

Source Manager

Passes the message onto the Source as

DSM Entry(pOrigin, DG _CONTRCL, DAT_I DENTITY, MSG_CLOSEDS,
pSour cel dentity);

Following receipt of TWRC_SUCCESS from the Source, Closes the Source. If the Source has no
more connections removes it from memory.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG _CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)

7-58 TWAIN 2.4 Specification

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Source Manager to Source)

Call
DS_Entry (pOrigin, DG _CONTROL, DAT_I DENTITY, MSG_CLOSEDS,
pSourceldentity) ;
pSour cel dentity = A pointer to a TW_ | DENTI TY structure.
Valid States
4 only (Transitions Source back to the “loaded but not open” State - approximately State 3.5)
Description

Closes the Source so it can be unloaded from memory. The Source responds by doing its
shutdown and clean-up activities needed to ensure the heap will be “clean” after the Source is
unloaded. Under Windows, the Source will only be unloaded if the connection with the last
application accessing it is about to be broken. The Source will know this by its internal “connect
count” that should be maintained by any Source that supports multiple application connects.

Source Manager

pSour cel dent i ty is filled from a previous MSG_OPENDS operation.

Source

Perform all necessary housekeeping in anticipation of being unloaded. Be sure to dispose of any
memory buffers that the Source has allocated locally, or that may have become the Source’s
responsibility during the course of the TWAIN session. The Source exists in a shared memory
environment. It is therefore critical that all remnants of the Source, except the entry point (initial)
code, be removed as the Source prepares to be unloaded.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC OPERATI ONERROR /* Internal Source error; */
/* handl ed by the Source */

See Also
DG CONTROL / DAT_IDENTITY / MSG OPENDS (from Source Manager to Source)

TWAIN 2.4 Specification 7-59

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_GET (from Source Manager to Source)

Call
DS _Entry (pOrigin, DG CONTRCL, DAT_I DENTITY, MSG GET, pSourceldentity) ;
pSour cel dentity = A pointer to a TW_ | DENTI TY structure.
Valid States
3 through 7 (Yes, the Source must be able to return the identity before it is opened.)
Description

This operation triplet is generated only by the Source Manager and is sent to the Source. It returns
the identity structure for the Source.

Source Manager

No special set up or action required.

Source

Fills in all fields of pSourceldentity except the Id field which is only modified by the Source
Manager. This structure was allocated by either the application or the Source Manager depending
on which one initiated the MSG_OPENDS operation for the Source.

Note: Sources should locate the code that handles initialization of the Source (responding to
MSG_OPENDS) and identification (DAT_I DENTI TY / MSG_CET) in the segment first
loaded when the DLL/code resource is invoked. Responding to the identification
operation should not cause any other segments to be loaded. Code to handle all other
operations and to support the user interface should be located in code segments that will
be loaded upon demand. Remember, the Source is a “guest” of the application and needs
to be sensitive to use of available memory and other system resources. The Source
Manager’s perceived performance may be adversely affected unless the Source efficiently
handles identification requests.

Return Codes

TWRC_SUCCESS /* This operation must succeed. */

7-60 TWAIN 2.4 Specification

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT

Call
DSM Entry (pOrigin, NULL, DG CONTROL, DAT_I| DENTITY, MSG GETDEFAULT,
pSourceldentity) ;
pSour cel dentity = A pointer to a TW_ | DENTI TY structure.
Valid States
3 through 7
Description
Gets the identification information of the system default Source.
Application

No special set up or action required.

Source Manager

Fills the structure pointed to by pSour cel dent i t y with identifying information about the
system default Source.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC _NODS /* no Sources found natchi ng */
[* application's SupportedG oups */
TWCC_LOAVEMORY /* not enough nenory to perform */
/* this operation */

See Also

DG CONTROL / DAT_I DENTITY / MSG GETFI RST

DG CONTROL / DAT_I DENTITY / MSG _GETNEXT

DG CONTROL / DAT_I DENTITY / MSG_OPENDS (from Application to Source
Manager)

DG CONTROL / DAT_IDENTITY / MSG OPENDS (from Source Manager to Source)
DG CONTROL / DAT_I DENTITY / MSG _USERSELECT

TWAIN 2.4 Specification 7-61

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST

Call

DSM_Entry (pOrigin, NULL, DG _CONTROL, DAT_I DENTITY, MSG_CGETFI RST,
pSourceldentity) ;

pSour cel dentity = A pointer to a TW_ | DENTI TY structure.

Valid States

3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW | DENTI TY structure). To obtain the complete list of all available
Sources requires invocation of a series of operations. The first operation uses M5SG_CETFI RST to
find the first Source on “the list” (whichever Source the Source Manager finds first). All the
following operations use DG_CONTROL / DAT_I DENTI TY / MSG_GETNEXT to get the identity
information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFI RST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDCFLI ST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the M5SG_GETFI RST/
MSG_GETNEXT operations. Once the application has verified that the Source is available, it can
request that the Source Manager open the Source using DG_CONTROL / DAT_I DENTI TY /
MSG_OPENDS. The application must not execute this operation without first verifying the
existence of the Source because the results may be unpredictable.

Application

No special set up or action required.

Source Manager
Fills the TW | DENTI TY structure pointed to by pSour cel dent i t y with the identity information
of the first Source found by the Source Manager within the TWAIN directory/folder.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC_NODS /* No Sources can be found */

7-62 TWAIN 2.4 Specification

TWCC_LOWMEMORY /* Not enough memory to perform */
/* this operation */

See Also

DG CONTROL / DAT_I DENTITY / MSG_GETDEFAULT

DG CONTROL / DAT_I DENTITY / MSG_GETNEXT

DG _CONTROL / DAT_I DENTITY / MSG_OPENDS (from Application to Source
Manager)

DG _CONTROL / DAT_I DENTITY / MSG_OPENDS (from Source Manager to Source)
DG CONTROL / DAT_I DENTITY / MSG_USERSELECT

TWAIN 2.4 Specification 7-63

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT

Call

DSM_Entry (pOrigin, NULL, DG _CONTROL, DAT_I DENTITY, MSG_GETNEXT,
pSourceldentity) ;

pSour cel dentity = A pointer to a TW_ | DENTI TY structure.

Valid States

3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW | DENTI TY structure). To obtain the complete list of all available
Sources requires invocation of a series of operations. The first operation uses DG_CONTROL /
DAT_| DENTI TY / MSG_GETFI RST to find the first Source on “the list” (whichever Source the
Source Manager finds first). All the following operations use M5SG_GETNEXT to get the identity
information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFI RST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDCFLI ST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the M5SG_GETFI RST/
MSG_GETNEXT operations. Once the application has verified that the Source is available, it can
request that the Source Manager open the Source using DG_CONTROL / DAT_I| DENTI TY /
MSG_OPENDS. The application must not execute this operation without first verifying the
existence of the Source because the results may be unpredictable.

Application

No special set up or action required.

Source Manager

Fills the TW | DENTI TY structure pointed to by pSourceldentity with the identity information of
the next Source found by the Source Manager within the TWAIN directory/folder.

Return Codes
TWRC_SUCCESS

TWRC _ENDOFLI ST [* after MSG GETNEXT if no nore */
/* Sources */

TWRC_FAI LURE

7-64 TWAIN 2.4 Specification

TWCC_LOWEMORY /* not enough nenory to perform*/
/* this operation */

See Also

DG CONTROL / DAT_I DENTITY / MSG_GETDEFAULT

DG CONTROL / DAT_I DENTITY / MSG_GETFI RST

DG _CONTROL / DAT_I DENTITY / MSG_OPENDS (from Application to Source
Manager)

DG _CONTROL / DAT_I DENTITY / MSG_OPENDS (from Source Manager to Source)
DG CONTROL / DAT_I DENTITY / MSG_USERSELECT

TWAIN 2.4 Specification 7-65

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source Manager)

Call
DSM_Entry (pOrigin, NULL, DG _CONTROL, DAT_I DENTITY, MSG_OPENDS,
pSourceldentity) ;
pSour cel dentity = A pointer to a TW_ | DENTI TY structure.
Valid States
3 only (Transitions to State 4, if successful)
Description
Loads the specified Sour ce into main memory and causes its initialization.
Application

The application may specify any available Source’s TW | DENTI TY structure in

pSour cel dent i ty. That structure may have been obtained using a MSG_GETFI RST,
MBG_GETNEXT, or MSG_USERSELECT operation. If the session with the Source Manager was
closed since the identity structure being used was obtained, the application must set the | d field to
0. This will cause the Source Manager to issue the Sour ce anew | d. The application can have
the Source Manager open the default Source by setting the Pr oduct Name field to “\0” (Null
string) and the | d field to zero.

Source Manager

Opens the Source specified by pSour cel dent i t y and creates a unique | d value for this Source

(under Microsoft Windows, this assumes that the Source hadn’t already been opened by another

application). This value is recorded in pSour cel dent i t y->I d. The Source Manager passes the
triplet on to the Source to have the remaining fields in pSour cel dent i t y filled in.

Upon receiving the request from the Source Manager, the Sour ce fills in all the fields in
pSour cel denti ty except for Id. If an application tries to connect to a Source that is already
connected to its maximum number of applications, the Source returns TWRC_FAI LURE/
TWCC_MAXCONNECTI ONS.

Warning: The Sour ce and application must not assume that the value written into
pSourceldentity.Id will remain constant between sessions. This value is used internally
by the Source Manager to uniquely identify applications and Sources and to manage
the connections between them. During a different session, this value may still be valid
but might be assigned to a different application or Source! Don’t use this value directly.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE

7-66 TWAIN 2.4 Specification

TWCC_LOAVEMORY

TWCC_MAXCONNECT! ONS

TWCC_NCODS

TWCC_OPERATI ONERROR

/* not enough nenory to */
/* open the Source */

/* Source cannot support*/
/* anot her connection */

/* specified Source was */
/* not found */

/* internal Source error;*/
/* handl ed by the Source */

See Also
DG _CONTROL / DAT_I DENTITY / MSG _CLOSEDS (from Application to Source
Manager)
DG _CONTROL / DAT_I DENTITY / MSG _CLOSEDS (from Source Manager to Source)
DG CONTROL / DAT_I DENTITY / MSG _GET (from Source Manager to Source)
DG CONTROL / DAT_I DENTITY / MSG_GETDEFAULT
DG CONTROL / DAT_I DENTITY / MSG_GETFI RST
DG CONTROL / DAT_I DENTITY / MSG_GETNEXT
DG CONTROL / DAT_I DENTITY / MSG_USERSELECT

TWAIN 2.4 Specification

7-67

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)

7-68

Call

DS _Entry(pOrigin, DG _CONTRCL, DAT_I DENTITY, MSG_OPENDS,
pSourceldentity) ;

pSour cel dentity = A pointer to a TW_ | DENTI TY structure.

Valid States

Source is loaded but not yet open (approximately State 3.5, session transitions to State 4, if
successful).

Description

Opens the Source for operation.

Source Manager

pSour cel dent i ty is filled in from a previous DG_CONTROL / DAT_I DENTI TY / M5G_GET and
the Id field should be filled in by the Source Manager.

Source

Initializes any needed internal structures, performs necessary checks, and loads all resources
needed for normal operation.

Refer to Chapter 12, "Operating System Dependencies" for more information on M5G_OPENDS.

Source should record a copy of * pOri gi n, the application’s TW | DENTI TY structure, whose Id
field maintains a unique number identifying the application that is calling. Sources that support
only a single connection should examine pOrigin->1d for each operation to verify they are being
called by the application they acknowledge being connected with. All requests from other
applications should fail (TWRC_FAI LURE / TWCC_MAXCONNECTI ONS). The Source is responsible
for managing this, not the Source Manager (the Source Manager does not know in advance how
many connections the Source will support). Multiple connections only happen by the same
application connecting multiple times with different names.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC L OAWVEMORY /* not enough nenory to */
/* open the Source */

TWCC MAXCONNECTI ONS /* Source cannot support */
/* anot her connection */

TWCC OPERATI ONERROR /* internal Source error;*/
/* handl ed by the Source */

See Also

DG CONTROL / DAT I DENTITY / MSG CLOSEDS (from Source Manager to Source)
DG CONTROL / DAT_IDENTITY / MSG GET (from Source Manager to Source)

TWAIN 2.4 Specification

DG_CONTROL / DAT_IDENTITY / MSG_SET

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_IDENTITY, MSG_SET,
pTw dentity);
pTwidentity = A pointertoa TW | DENTI TY structure containing a valid TW | DENTI TY for a
Data source.

Valid States
3

Description
This operation triplet is generated by the application and is consunmed by
the Data Source Manager. It allows an application to set the default
TWAIN driver, which is reported back by DG CONTROL / DAT_I DENTITY /
MSG_GETDEFAULT.

Application

The application nust specify an available Source’s TWIDENTITY structure
in pTwdentity. That structure nust have been obtained using a
MSG_CGETFI RST, MSG GETNEXT, or MSG USERSELECT operation since the Source
Manager was | ast opened.

Source Manager

Sets a new default TWAIN driver.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADVALUE [* Invalid DS in TW.IDENTITY */

See Also
DG CONTROL / DAT_I DENTITY / MSG _GETDEFAULT

TWAIN 2.4 Specification 7-69

Chapter 7

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

7-70

Call

Windows and Macintosh only; MSG_USERSELECT is not available on Linux. Refer to Chapter 12,
"Operating System Dependencies".

DSM_Entry (pOrigin, NULL, DG CONTROL, DAT_I DENTI TY, MSG USERSELECT,
pSourceldentity) ;

pSour cel dentity = A pointer to a TW | DENTI TY structure.

Valid States

3 through 7

Description

This operation should be invoked when the user chooses Select Source... from the application’s
File menu (or an equivalent user action). This operation causes the Source Manager to display the
Select Source dialog. This dialog allows the user to pick which Source will be used during
subsequent Acquire operations. The Source selected becomes the system default Source. This
default persists until a different Source is selected by the user. The system default Source may be
overridden by an application (the override is local to only that application). Only Sources that can
supply data matching one or more of the application’s SupportedGroups (from the application’s
identity structure) will be selectable. All others will be unavailable for selection.

Application

If the application wants a particular Source, other than the system default, to be highlighted in the
Select Source dialog, it should set the Pr oduct Narre field of the structure pointed to by
pSourceldentity to the ProductName of that Source. This information should have been obtained
from an earlier operation using DG_CONTROL / DAT_I DENTI TY / MSG_GETFI RST,
MSG_GETNEXT, or MSG_USERSELECT. Otherwise, the application should set the Pr oduct Name
field in pSour cel dent i t y to the null string (“\0”). In either case, the application should set the
Id field in pSour cel denti ty to zero.

If the Source Manager can’t find a Source whose Pr oduct Name matches that specified by the
application, it will select the system default Source (the default that matches the SupportedGroups
of the application). This is not considered to be an error condition. No error will be reported. The
application should check the Pr oduct Nane field of pSour cel dent i t y following this operation
to verify that the Source it wanted was opened.

Source Manager

The Source Manager displays the Select Source dialog and allows the user to select a Source.
When the user clicks the “OK” button (“Select” button in the Microsoft Windows Source
Manager) in the Select Source dialog, the system default Source (maintained by the Source
Manager) will be changed to the selected Source. This Source’s identifying information will be
written into pSourceldentity.

TWAIN 2.4 Specification

The “Select” button (“OK” button in the Macintosh Source Manager) will be grayed out if there
are no Sources available matching the SupportedGroups specified in the application’s identity
structure, pOrigin. The user must click the “Cancel” button to exit the Select Source dialog. The
application cannot discern from this Return Code whether the user simply canceled the selection
or there were no Sources for the user to select. If the application really wants to know whether
any Sources are available that match the specified SupportedGroups it can invoke a

MBG_GETFI RST operation and check for a successful result.

It copies the TW | DENTI TY structure of the selected Source into pSour cel denti ty.

Suggestion for Source Developers: The string written in the Source’s

TW_ I DENTI TY. Pr oduct Nane field should clearly and unambiguously identify your product or
the Source to the user (if the Source can be used to control more than one device). ProductName

contains the string that will be placed in the Select Source dialog (accompanied, on the Macintosh,
with an icon from the Source’s resource file representing the Source). It is further suggested that

the Source’s disk file name approximate the Pr oduct Nane to assist the user in equating the two.

Return Codes
TWRC _SUCCESS

TWRC_CANCEL /* User clicked cancel button - maybe there */
/* were no Sources */

TWRC_FAI LURE
TWCC_ LOWEMORY /* not enough nenory to performthis */

/* operation */
See Also
DG CONTROL / DAT_I DENTITY / MSG_GETDEFAULT
DG CONTROL / DAT_I DENTITY / MSG_GETFI RST
DG CONTROL / DAT_I DENTITY / MSG_GETNEXT
DG _CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)
DG _CONTROL / DAT_I DENTITY / MSG_OPENDS (from Source Manager to Source)

DG _CONTROL / DAT_IDENTITY / MSG_SET

TWAIN 2.4 Specification 7-71

Chapter 7

DG_CONTROL / DAT_METRICS / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_METRICS, MSG GET, pMetrics);
pMetrics = A pointer toa TW METRI CS structure.
Valid States
4 only
Description
Reads information relating to the last time DG_CONTROL / DAT_USERI NTERFACE /
MSG_ENABLEDS was sent. An application calls this to get final counts after scanning. This is
necessary because some metrics cannot be detected during scanning, such as blank images
discarded at the very end of a session.
In this example | CAP_AUTODI SCARDBLANKPAGES is on, so the scanner will not offer some
images for transfer if it determines that there’s no content on the paper.
Physical Sheet Image Count TWEI_ PAPERCOUNT Note
1 1 1 Transferred
1 -- - Blank
2 2 2 Transferred
2 3 2 Transferred
3 -- -- Blank
3 -~ - Blank
4 4 4 Transferred
4 4 4 Transferred
5 -- -- Blank
5 -~ - Blank
Five sheets of paper were processed by the scanner, but only five images were transferred to the
application. The application is able to detect the gaps for sheets 1 - 4, but since sheet 5 is the last
one captured there’s no evidence that it was skipped.
In this example if the application calls DG CONTROL / DAT_METRI CS / MSG_GET in state 4,
after scanning is complete, they can see that TW METRI CS. Sheet Count is set to 5, and determine
that the last sheet of paper was discarded.
Source

The source only processes fields that fit within the range of TW METRI CS. Si zeOf (this is done in
case new fields are added in the future).

7-72 TWAIN 2.4 Specification

The call reports metrics gathered since the last time DG_CONTROL / DAT_USERI NTERFACE /
MSG_ENABLEDS was issued. If the call has never been issued then the fields in the structure
return zero

Application

The application sets TW METRI CS. Si zef to the size of the TW METRI CS structure (this is done
in case new fields are added in the future).

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADVALUE
TWCC_SEQERROR

See Also
DG CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS

TWAIN 2.4 Specification 7-73

Chapter 7

DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK (from Source to Application)

For Macintosh OS X 1.9 data sources, refer to the TWAIN 1.9 specification.

Call
DSM_Entry (pOrigin, pDest, DG CONTROL, DAT NULL, MSG CLOSEDSOK, NULL) ;
This operation requires no data (NULL).
Valid States
5 through 7 (This operation causes the session to transition to State 5.)
Description
The Source sends this message to the application to indicate that the Source needs to be closed.
Source

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

Source Manager

Upon receiving this triplet, the Source Manager passes this message to the application either using
the applications callback function or by posts a private message to the application’s event/
message loop.

Application

The Application will either receive this message in its callback function or as an event in its event
loop.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC SEQERROR /* Operation invoked in invalid state */

TWCC BADDEST /* No such application in session wth*/
/* Source */

See Also

DG _CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG _CONTROL / DAT_USERI NTERFACE / MSG DI SABLEDS

7-74 TWAIN 2.4 Specification

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application)

For Macintosh OS X 1.9 data sources, refer to the TWAIN 1.9 specification.

Call
DSM_Entry (pOrigin, pDest, DG CONTROL, DAT_NULL, MSG _CLOSEDSREQ, NULL) ;
This operation requires no data (NULL).
Valid States
5 through 7 (This operation causes the session to transition to State 5.)
Description
The Source sends this message to the application to indicate that the Source needs to be closed.
Source

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

Source Manager

Upon receiving this triplet, the Source Manager passes this message to the application either using
the applications callback function or by posts a private message to the application’s event/
message loop.

Application

The Application will either receive this message in its callback function or as an event in its event
loop.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC SEQERROR /* Operation invoked in invalid state */

TWCC BADDEST /* No such application in session wth*/
/* Source */

See Also

DG _CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG _CONTROL / DAT_CALLBACK / MSG REG STER CALLBACK
DG _CONTROL / DAT_USERI NTERFACE / MSG DI SABLEDS

TWAIN 2.4 Specification 7-75

Chapter 7

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT (from Source to Application)

Call
DSM_Entry (pOrigin, pDest, DG CONTROL, DAT_NULL, MSG _DEVI CEEVENT, NULL) ;
This operation requires no data (NULL)

Valid States
4 through 7

Description

When enabled the source sends this message to the Application to alert it that some event has
taken place. Upon receiving this message, the Application must immediately issue a call to
DG _CONTROL / DAT_DEVI CEEVENT / MSG_CET to obtain the event information.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC SEQERROR - operation invoked in invalid state.
TWCC BADDEST - no such application in session with Source.

See Also

DG _CONTROL / DAT_DEVI CEEVENT / MSG_GET

Capability - CAP_DEVI CEEVENT

7-76 TWAIN 2.4 Specification

DG_CONTROL / DAT_NULL / MSG_XFERREADY (from Source to Application)

For Macintosh OS X 1.9 data sources, refer to the TWAIN 1.9 specification.

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_NULL, MSG XFERREADY, NULL);
This operation requires no data (NULL).

Valid States
5 only (This operation causes the transition to State 6.)

Description
The Source sends this message to the application to indicate that the Source has data that is ready
to be transferred.

Source

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM _Ent r y point.

Source Manager

Upon receiving this triplet, the Source Manager passes this message to the application either using
the applications callback function or by posts a private message to the application’s event/
message loop.

Application
The Application will either receive this message in its callback function or as an event in its event

loop.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC SEQERROR /* Operation invoked in invalid state */
TWCC BADDEST /* No such application in session wth*/
/* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

DG _CONTROL / DAT_CALLBACK / MSG_REG STER_CALLBACK
DG | MAGE / DAT_I MAGEFI LEXFER / MSG_GET

DG | MAGE / DAT_I MAGEMEMFI LEXFER / MSG_GET

DG | MAGE / DAT_I MVAGEMEMXFER / MSG_GET

DG_| MAGE / DAT_I MAGENATI VEXFER / MG _GET

TWAIN 2.4 Specification 7-77

Chapter 7

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Call
DSM Entry(pOrigin, NULL, DG_CONTRCL, DAT_PARENT, MSG _CLOSEDSM pParent);
pPar ent =the same pPar ent used for OPENDSM.

Valid States
3 only (causes transition back to State 2, if successful)

Description
When the application has closed all the Sources it had previously opened, and is finished with the
Source Manager (the application plans to initiate no other TWAIN sessions), it must close the
Source Manager. The application should unload the Source Manager DLL or code resource after
the Source Manager is closed —unless the application has immediate plans to use the Source
Manager again.
After the Source Manager is closed the unique ID assigned to pOri gi n->I d is no longer valid.

Application

References the same pPar ent parameter that was used during the “open Source Manager”
operation. If the operation returns TWRC_SUCCESS, the application should unload the Source
Manager from memory.

Source Manager

Does any housekeeping needed to prepare for being unloaded from memory. This housekeeping
is transparent to the application.

If the Source Manager has been opened multiple times it will remain active and connected to the
other connection(s).

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG _CONTROL / DAT_PARENT / MSG_OPENDSM

7-78 TWAIN 2.4 Specification

DG_CONTROL / DAT_PARENT / MSG_OPENDSM
Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_PARENT, MSG OPENDSM pParent);

On Windows - pPar ent = points to the window handl e (hWhd) that will act as the Source’s
“parent”. The variable is of type TW HANDLE and must contain the window handle.

On Macintosh - pParent = should be a NULL value.

Valid States

2 only (causes transition to State 3, if successful)

Description

Causes the Source Manager to initialize itself. This operation must be executed before any other
operations will be accepted by the Source Manager.

Application

The application must allocate a structure of type TW | DENTI TY and fill in all fields. The Id field
must be NULL. Once the structure is prepared, this pOr i gi n parameter should point at that
structure. If the Source Manager is opened successfully it will assign a value to Id.

The application must save the entire structure. From now on, the structure will be referred to by
the pOri gi n parameter to identify the application in every call the application makes to
DSM Entry().

Windows — Set pPar ent to point to a window handle (hWhd) of an open window that will
remain open until the Source Manager is closed.

Macintosh —Set pPar ent to NULL.

Linux —Set pPar ent to NULL.

Source Manager
Initializes and prepares itself for subsequent operations. Maintains a copy of pPar ent .

If successfully opened, the Source Manager will assign a unique ID to pOri gi n->Id for this
application.
Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC_LOAVEMORY /* not enough nenory to perform*/
/* this operation */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also
DG CONTROL / DAT_PARENT / MsSG_CLOSEDSM

TWAIN 2.4 Specification 7-79

Chapter 7

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

Call
DSM_Entry (pOrigin, pDest, DG _CONTROL, DAT PASSTHRU,MSG PASSTHRU,
pSourcePassthru) ;
pSour cePasst hr u = A pointer to a TW PASSTHRU structure
Valid States
4 through 7
Description

PASSTHRU is intended for the use of Source writers writing diagnostic applications. It allows raw
communication with the currently selected device in the Source.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADPROTOCOL - capability not supported.
TWCC SEQERROR - command coul d not be conpleted in this state.

See Also
CAP_PASSTHRU

7-80 TWAIN 2.4 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Call

DSM _Entry (pOrigin, pDest, DG CONTROL, DAT_PENDI NGXFERS, MSG_ENDXFER,
pPendingXfers) ;

pPendi ngXf er s = A pointer to a TW PENDI NGXFERS structure

Valid States

6and 7

When DAT_XFERGROUP is set to DG_| MAGE:

(Transitions to State 5 if this was the last transfer (pPendi ngXf er s- >Count == 0).
Transitions to State 6 if there are more transfers pending (pPendi ngXf er s- >Count ! = 0).
To abort all remaining transfers and transition from State 6 to State 5, use DG_CONTROL /
DAT_PENDI NGXFERS / MSG_RESET.

When DAT_XFERGROUP is set to DG_AUDI O

Transitions to State 6 no matter what the value of pPendi ngXf er s- >Count .

Description

This triplet is used to cancel or terminate a transfer. Issued in state 6, this triplet cancels the next
pending transfer, discards the transfer data, and decrements the pending transfers count. In state
7, this triplet terminates the current transfer. If any data has not been transferred (this is only
possible during a memory transfer) that data is discarded.

The application can use this operation to cancel the next pending transfer (Source writers take
note of this). For example, after the application checks TW | MAGEI NFO (or TW AUDI O NFOQ, if
transferring audio snippets), it may decide to not transfer the next image. The operation must be
sent prior to the beginning of the transfer, otherwise the Source will simply abort the current
transfer. The Source decrements the number of pending transfers.

Application

The application must invoke this operation at the end of every transfer to signal the Source that
the application has received all the data it expected. The application should send this after
receiving a TWRC_XFERDONE or TWRC_CANCEL.

No special set up or action required. Be sure to correctly track which state the Source will be in as
a result of your action. Be aware of the value in pPendi ngXf er s- >Count both before and after

the operation. Invoking this operation causes the loss of data that your user may not expect to be
lost. Be very careful and prudent when using this operation.

When DAT_XFERGROUP is set to DG_| MAGE and CAP_JOBCONTRQOL is set to other than
TWIC_NONE then check pPendi ngXf er s- >EQJ for TWEJ XXX Job control value.

TWAIN 2.4 Specification 7-81

Chapter 7

7-82

Source

Option #1) Fill pPendi ngXf er s- >Count with the number of transfers the Source is ready to
supply to the application, upon demand. If pPendi ngXf er s- >Count > 0 (or equals -1),
transition to State 6 and await initiation of the next transfer by the application. If

pPendi ngXf er s- >Count == O, transition all the way back to State 5 and await the next
acquisition.

Option #2) Preempt the acquired data that is next in line for transfer to the application (pending
transfers can be thought of as being pushed onto a FIFO queue as acquired and popped off the
queue when transferred). Decrement pPendi ngXf er s- >Count . If already acquired, discard the
data for the preempted transfer. Update pPendi ngXf er s- >Count with the new number of
pending transfers. If this value is indeterminate, leave the value in this field at -1. Note: -1 is nota
valid value for the number of audio snippets.

Option #3) Cancel the current transfer. Discard any local buffers or data involved in the transfer.
Prepare the Source and the device for the next transfer. Decrement pPendi ngXf er s- >Count
(don’t decrement if already zero or -1). If there is a transfer pending, return to State 6 and prepare
the Source to begin the next transfer. If no transfer is pending, return to State 5 and await initiation
of the next acquisition from the application or the user. Note: when DAT_XFERGROUP is set to
DG_AUDI O the Source will not go lower than State 6 based on the value of pPendi ngXf er s-
>Count .

When DAT_XFERGROUP is set to DG_| MAGE and CAP_JOBCONTRQOL is set to other than
TWI C_NONE then pPendi ngXf er s- >EQJ should reflect the current TWEJ _xXX Job control value.

Note: If a Source supports simultaneous connections to more than one application, the Source
should maintain a separate pPendi ngXf er s structure for each application it is in-session
with.

Return Codes

TWRC_SUCCESS

TWRC_FAI LURE
TWCC BADDEST /* No such Source in-session with application */
TWCC SEQERROR /* Operation invoked in invalid state */

See Also

DG AUDI O / DAT_AUDI OFI LEXFER / MSG_GET

DG AUDI O / DAT_AUDI ONATI VEXFER / MSG_GET

DG _CONTROL / DAT_PENDI NGXFERS / MSG_GET

DG CONTROL / DAT_PENDI NGXFERS / MSG RESET

DG _CONTROL / DAT_PENDI NGXFERS / MSG STOPFEEDER
DG CONTROL / DAT_XFERGROUP / MSG_SET

DG | MAGE / DAT_| MAGEFI LEXFER / MSG_GET

DG | MAGE / DAT_| MAGEMEMFI LEXFER / MSG_GET

DG | MAGE / DAT_| MAGEMEMXFER / MSG_GET

DG | MAGE / DAT_I MAGENATI VEXFER / MSG_GET

Capability - CAP_XFERCOUNT

TWAIN 2.4 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG _CONTROL, DAT_PENDI NGXFERS,
MSG_GET, pPendingXfers) ;

pPendi ngXf er s = A pointer to a TW PENDI NGXFERS structure

Valid States

4 through 7

Description

Returns the number of transfers the Source is ready to supply to the application, upon demand. If
DAT_XFERGROUP is set to DG_| MAGE, this is the number of images. If DAT_XFERGROUP is set to
DG_AUDI O this is the number of audio snippets for the current image. If there is no current
image, this call must return TWRC_FAI LURE / TWCC_SEQERROR.

Application

No special set up or action required.

When DAT_XFERGROUP is set to DG_| MAGE and CAP_JOBCONTRQOL is set to other than
TW C_NONE then check pPendi ngXf er s- >EQJ for TWEJ_XxxX Job control value.

Source

Fill pPendi ngXf er s- >Count with the number of transfers the Source is ready to supply to the
application, upon demand. This value should reflect the number of complete data blocks that have
already been acquired or are in the process of being acquired.

When CAP_JOBCONTRQOL is set to other than TWIC_NONE then pPendi ngXf er s- >EQJ should
reflect the current TWEJ _xXX Job control value.

When DAT_XFERGROUP is set to DG_| MAGE:

If the Source is not sure how many transfers are pending, but is sure that the number is at least
one, set pPendi ngXf er s- >Count to -1. A Source connected to a device with an automatic
document feeder that cannot determine the number of pages in the feeder, or how many
selections the user may make on each page, would respond in this way. A Source providing
access to a series of images from a video camera or a data base may also respond this way.

When DAT_XFERGROUP is set to DG_AUDI O

-1 is not a valid value for pPendi ngXf er s- >Count .

Return Codes
TWRC _SUCCESS

TWAIN 2.4 Specification 7-83

Chapter 7

TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* QOperation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDI NGXFERS / MsG_ENDXFER
DG_CONTROL / DAT_PENDI NGXFERS / MsG_RESET

DG _CONTROL / DAT_PENDI NGXFERS / MsSG_STOPFEEDER
DG _CONTROL / DAT_XFERGROUP / M5SG_SET

Capability - CAP_XFERCOUNT

7-84 TWAIN 2.4 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Call

DSM_Entry (pOrigin, pDest, DG _CONTROL, DAT_PENDI NGXFERS,
MSG_RESET, pPendingXfers) ;

pPendi ngXf er s = A pointer to a TW PENDI NGXFERS structure

Valid States

When DAT_XFERGROUP is set to DG_| MAGE:

6 only (Transitions to State 5, if successful)

When DAT_XFERGROUP is set to DG_AUDI O

6 only (State remains at 6)

Description

Sets the number of pending transfers in the Source to zero.

Application
When DAT_XFERGROUP is set to DG_| MAGE:

No special set up or action required. Be aware of the state transition caused by this operation.
Invoking this operation causes the loss of data that your user may not expect to be lost. Be
very careful and prudent when using this operation. The application may need to use this
operation if an error occurs within the application that necessitates breaking off all TWAIN
sessions. This will get the application, Source Manager, and Source back to State 5 together.

When DAT_XFERGROUP is set to DG_AUDI O

The available audio snippets are discarded, but the Source remains in State 6.

Source

Set pPendi ngXf er s- >Count to zero. Discard any local buffers or data involved in any of the
pending transfers.

When DAT_XFERGROUP is set to DG_| MAGE:

Return to State 5 and await initiation of the next acquisition from the application or the user.

When DAT_XFERGROUP is set to DG_AUDI O

Remain in State 6.

TWAIN 2.4 Specification 7-85

Chapter 7

Note: If a Source supports simultaneous sessions with more than one application, the Source
should maintain a separate pPendingXfers structure for each application it is in-session
with.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC BADDEST /* No such Source in-session with application */

TWCC_SEQERROR /* QOperation invoked in invalid state */
See Also
DG _CONTROL / DAT_PENDI NGXFERS / MSG_ENDXFER
DG _CONTROL / DAT_PENDI NGXFERS / MSG_GET
DG CONTROL / DAT_PENDI NGXFERS / MsSG_STOPFEEDER
DG CONTROL / DAT_XFERGROUP / NMSG_SET

Capability - CAP_XFERCOUNT

7-86 TWAIN 2.4 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER

Call

DSM_Entry (pOrigin, pDest, DG _CONTROL, DAT_PENDI NGXFERS,
MSG_STOPFEEDER, pPendingXfers) ;

pPendi ngXf er s = A pointer to a TW PENDI NGXFERS structure

Valid States

6 only

Description

If CAP_AUTOSCAN is TRUE, this command will stop the operation of the scanner’s automatic
feeder. No other action is taken.

Application

The DG_CONTROL / DAT_PENDI NGXFERS / MSG_RESET command stops a session (returning to
State 5), but it also discards any images that have been captured by the scanner. The
MBG_STCOPFEEDER command solves this problem by stopping the feeder, but remaining in State 6.
The application may then continue to transfer images, until pPendi ngXf er s- >Count goes to
zero.

Source

This command should only perform successfully if CAP_AUTOSCANis TRUE. If CAP_AUTOSCANis
FALSE, this command should return TWRC _FAI LURE / TWCC_SEQERROR.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC BADPROTOCOL - Source does not support operation.
TWCC SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_PENDI NGXFERS / MsG_ENDXFER
DG_CONTROL / DAT_PENDI NGXFERS / MSG_GET
DG_CONTROL / DAT_PENDI NGXFERS / MsG_RESET

Capabilities - CAP_AUTOSCAN

TWAIN 2.4 Specification 7-87

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,
M5G_CET, pSetupFile);
pSet upFi | e = A pointer to a TW SETUPFI LEXFER structure
Valid States
4 through 6
Description
Returns information about the file into which the Source has or will put the acquired DG _| MAGE or
DG_AUDI Odata.
Application
No special set up or action required.
Source

Set the following:

pSet upFi |l e->Format = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi | e- >Fi | eNane = name of file
Windows: include the complete path name
Macintosh: filename only
Linux: include the complete path name
pSet upFi | e- >VRef Num = volume reference number
Windows: not used. Set to TWON_DONTCARE16.
Macintosh: Set to the FSVol umreRef Numof the folder of the file.
Linux: not used. Set to TWON DONTCAREL6.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session with application */
TWCC BADPROTOCOL /* Source does not support file transfer */
TWCC SEQERROR /* Operation invoked in invalid state */

7-88 TWAIN 2.4 Specification

See Also

DG _CONTROL / DAT_SETUPFI LEXFER / MSG_GETDEFAULT
DG _CONTROL / DAT_SETUPFI LEXFER / MSG_RESET

DG _CONTROL / DAT_SETUPFI LEXFER / NMSG_SET

DG | MAGE / DAT_I MAGEFI LEXFER / MSG_GET

DG | MAGE / DAT_I MAGEMEMFI LEXFER / MSG_GET

Capabilities - | CAP_XFERMECH, | CAP_| MAGEFI LEFORVAT, ACAP_XFERVECH

TWAIN 2.4 Specification 7-89

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT

Call

DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,

MSG_GETDEFAULT, pSetupFile);

pSet upFi | e = A pointer to a TW SETUPFI LEXFER structure
Valid States

4 through 6
Description

Returns information for the default DG_| MAGE or DG_AUDI Ofile.
Application

No special set up or action required.
Source

Set the following:
pSet upFi | e- >For mat = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI OConstants: TWAF_WAV, TWAF_AI FF, TWAF_AU, etc.)
pSet upFi | e- >Fi | eName = name of file
Windows: include the complete path name
Macintosh: filename only
Linux: include the complete path name
pSet upFi | e- >VRef Num= volume reference number
Windows: not used. Set to TWON_DONTCAREL6.
Macintosh: Set to the FSVolumeRefNum of the folder of the file.

Linux: not used. Set to TWON_DONTCAREL6.

Return Codes

TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session with application */
TWCC _BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /[* Operation invoked in invalid state */

7-90 TWAIN 2.4 Specification

See Also

DG _CONTROL / DAT_SETUPFI LEXFER / NMSG_GET
DG _CONTROL / DAT_SETUPFI LEXFER / MSG_RESET
DG _CONTROL / DAT_SETUPFI LEXFER / NMSG_SET
DG | MAGE / DAT_I MAGEFI LEXFER / MSG_GET
DG | MAGE / DAT_I MAGEMEMFI LEXFER / MSG_GET

Capabilities - | CAP_XFERMECH, | CAP_| MAGEFI LEFORVAT, ACAP_XFERVECH

TWAIN 2.4 Specification 7-91

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_SETUPFI LEXFER,
MSG_RESET, pSetupFile);
pSet upFi | e = A pointer to a TW SETUPFI LEXFER structure
Valid States
4 only
Description
Resets the current file information to the DG_| MAGE or DG_AUDI Odefault file information and
returns that default information..
Application
No special set up or action required.
Source

Set the following:
pSet upFi | e- >For mat = format of destination file
(DG_I MAGE Constants: TWFF_TI FF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI OConstants: TWAF_WAV, TWAF_Al FF, TWAF_AU, etc.)
pSet upFi | e->Fi | eName = name of file
W ndows: include the conplete path nanme
Maci nt osh: fil ename only
Li nux: include the conplete path nane
pSet upFi | e- >VRef Num = vol une reference nunber
W ndows: not used. Set to TWON DONTCARELG6.
Maci ntosh: Set to the FSVol umeRef Numto reflect the default file
only if it already exists. Qtherw se, set this field

to NULL.

Li nux: not used. Set to TWON_DONTCARE1S6.

7-92 TWAIN 2.4 Specification

Return Codes
TWRC _SUCCESS
TWRC FAI LURE

See Also

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

/* The follow ng introduced for 2.0 or higher */
TWCC_FI LEWRI TEERROR

DG _CONTROL / DAT_SETUPFI LEXFER / MG _GET

DG _CONTROL / DAT_SETUPFI LEXFER / MSG_GETDEFAULT
DG _CONTROL / DAT_SETUPFI LEXFER / NM5SG_SET

DG | MAGE / DAT_I MAGEFI LEXFER / MSG_GET

DG | MAGE / DAT_I MAGEMEMFI LEXFER / MSG_GET

Capabilities - | CAP_XFERMECH, | CAP_| MAGEFI LEFORVAT, ACAP_XFERVECH

TWAIN 2.4 Specification

7-93

Chapter 7

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET

Call

DSM Entry (pOrigin, pDest, DG CONTRCL, DAT_SETUPFI LEXFER,
MSG_SET, pSetupFile);

pSet upFi | e = A pointer to a TW SETUPFI LEXFER structure

Valid States

4 through 6

Description

Sets the file transfer information for the next file transfer. The application is responsible for
verifying that the specified file name is valid and that the file either does not currently exist (in
which case, the Source is to create the file), or that the existing file is available for opening and
read/write operations. The application should also assure that the file format it is requesting can

be provided by the Source (otherwise, the Source will generate a TWRC_FAI LURE /
TWCC_BADVAL UE error).

Application

Set the following:

pSet upFil e->Fornmat = format of destination file
(DG_| MAGE Constants: TWFF_TIFF, TWFF_PI CT, TWFF_BMP, etc.)
(DG_AUDI O Constants: TWAF_WAV, TWAF_Al FF, TWAF_AU, etc.)
pSet upFi |l e->Fi l eName = nanme of file
W ndows: include the conplete path nane
Maci ntosh: filenane only
Li nux: include the conplete path nane
pSet upFi | e- >VRef Num = vol une reference nunber
W ndows: not used. Set to TWON _DONTCARELG.

Maci ntosh: Set to the FSVoluneRef Numto reflect the default

file only if it already exists. Oherwise, set this field to
NULL.

Li nux: not used. Set to TWON DONTCARE1G6.

Note: | CAP_XFERMECH or ACAP_XFERMECH (depending on the value of DAT_XFERGROUP)
must have been set to TWEXdata) and return TWRC_FAI LURE with TWCC_BADVALUE. If
the format and file name are OK, but a file error occurs when trying to open the file (other
than "file does not exist”), return TWCC_BADVALUE and set up to use the default file. If the
specified file does not exit, create it. If the file exists and has data in it, overwrite the
existing data starting with the first byte of the file.

7-94 TWAIN 2.4 Specification

Return Codes
TWRC _SUCCESS
TWRC FAI LURE

See Also

DG_
DG_
DG_
DG_
DG_

TWCC_BADDEST /* No such Source in-session with application
TWCC_BADPROTOCOL /* Source does not support file transfer
TWCC_BADVALUE /* Source cannot conply with one of the

/* settings
TWCC_SEQERROR /[* Operation invoked in invalid state
/* The follow ng introduced for 2.0 or higher */
TWCC_FI LEWRI TEERRCOR

CONTROL / DAT_SETUPFI LEXFER / MSG_GET
CONTROL / DAT_SETUPFI LEXFER / MSG_CETDEFAULT
CONTROL / DAT_SETUPFI LEXFER / MSG_RESET

| MAGE / DAT_I MAGEFI LEXFER / MSG_GET

| MVAGE / DAT_I MAGEMEMFI LEXFER / MSG_GET

Capabilities - | CAP_XFERMECH, | CAP_| MAGEFI LEFORVAT, ACAP_XFERVECH

TWAIN 2.4 Specification

*/
*/
*/
*/
*/

7-95

Chapter 7

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_SETUPMEMXFER, MSG_CET,
pSet upMem ;

pSet upMem= A pointer to a TW SETUPMEMXFER structure.

Valid States

4 through 6

Description

Returns the Source’s preferred, minimum, and maximum allocation sizes for transfer memory
buffers. The application using buffered memory transfers must use a buffer size between
MinBufSize and MaxBufSize in their TW | MAGEMEMXFER Memory.Length when using the
DG_| MACE / DAT_| MAGEMEMXFER / MSG_CET operation. Sources may return a more efficient
preferred value in State 6 after the image size, etc. has been specified.

Application

No special set up or action required.

Source
Set the following:
pSetupMem->MinBufSize = minimum usable buffer size,
in bytes

pSetupMem->MaxBufSize = maximum usable buffer size,
in bytes (-1 means an indeterminately large buffer is acceptable)

pSetupMem->Preferred = preferred transfer buffer size, in bytes

If the Source doesn’t care about the size of any of these specifications, set the field(s) to
TWON_DONTCARE32. This signals the application that any value for that field is OK with the
Source.

Return Codes
TWRC SUCCESS
TWRC FAI LURE

TWCC_BADDEST /* No such Source in-session with */
/* application */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

7-96 TWAIN 2.4 Specification

See Also

DG | MAGE / DAT_I MAGEMEMFI LEXFER / MSG_GET
DG | MAGE / DAT_I MVAGEMEMXFER / MSG_GET

Capabilities - | CAP_COVPRESSI ON, | CAP_XFERMECH

TWAIN 2.4 Specification 7-97

Chapter 7

DG _CONTROL / DAT_STATUS / MSG_GET (from Application to Source Manager)

Call
DSM Entry(pOrigin, NULL, DG CONTROL, DAT_STATUS, MSG GET,
pSour ceSt at us) ;
pSour ceSt at us = A pointer toa TW STATUS structure.
Valid States
2 through 7
Description
Returns the current Condition Code for the Source Manager.
Application

NULL references the operation to the Source Manager.

Source Manager

Fills pSour ceSt at us- >Condi t i onCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Return Codes
TWRC_SUCCESS /* This operation nmust succeed */
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session with */
[* application */

See Also

Return Codes and Condition Codes (Chapter 11, "Return Codes and Condition Codes")

7-98 TWAIN 2.4 Specification

DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source)

Call
DSM_Entry (pOrigin, pDest, DG _CONTRCL, DAT_STATUS, MSG GET,
pSourceStatus) ;
pSour ceSt at us = A pointer toa TW STATUS structure.
Valid States
4 through 7
Description
Returns the current Condition Code for the specified Source.
Application
pDest references a copy of the targeted Source’s identity structure.
Source

Fills pSour ceSt at us ->Condi t i onCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Fills pSour ceSt at us- >Dat a with its current custom code. If there is no custom code, the value
must be 0.

Return Codes

TWRC _SUCCESS /* This operation nmust succeed */
TWRC_FAI LURE
TWCC BADDEST /* No such Source in-session with */
/* application */
See Also

Return Codes and Condition Codes (Chapter 11, "Return Codes and Condition Codes")

TWAIN 2.4 Specification 7-99

Chapter 7

DG_CONTROL / DAT_STATUSUTF8/MSG_GET

7-100

Call
DSM Entry(pOrigin, NULL, DG CONTRCL, DAT_STATUSUTF8, MsG_CET,
pSt at usUt f 8);
pSt at usUt f 8 = pointer to a TW STATUSUTF8 structure.

Valid States
3 through 7

Description
Translate the contents of a TW _STATUS structure received from a Source into a localized UTF-8
encoded string.

Application
This operation can be called at anytime, with the contents of any TW STATUS structure that it has
received from the Source. The Source returns a value indicating the number of bytes (not
characters) of data, including the terminating NUL byte. It also returns a handle to a UTF-8
encoded string, which the Application must lock before accessing, and which it must unlock and
free when it is done.

Source

Translates the full contents of a TW STATUS structure into a localized UTF-8 encode string,
returning back a handle to that string, and the number of bytes (not characters) in the string,
including the terminating NUL byte.

The Source returns a generic message if it is asked to return a string for a status code that it does
not recognize.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADVALUE// sonething is wong with &StatusUf8

See Also

DG_CONTROL / DAT_STATUS /

MSG CGET (from Application to Source Manager)
DG _CONTROL / DAT_STATUS / MsG_

T (from Application to Source)

oko

TWAIN 2.4 Specification

DG_CONTROL / DAT_TWAINDIRECT / MSG_SETTASK

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_TWAI NDI RECT, M5G_SETTASK,
pTwai nDi rect);
pUser | nt er f ace = A pointer to a TW TWAI NDI RECT structure.

Valid States
4 only

Description
Sends a TWAIN Direct task from the application to the driver.

Application
The application sets TW TWAI NDI RECT .SizeOf to the size of the TW TWAI NDI RECT structure (this
is done in case new fields are added in the future).
The application sets TW TWAI NDI RECT.CommunicationManager to the current system being
used to connect the application to the scanner.
The application then creates a handle containing a TWAIN Direct task (in UTF-8 JSON format as a
NUL-terminated C string). TW TWAI NDI RECT.Send receives this handle, and
TW TWAI NDI RECT.SendSize is set to the number of bytes of data in the JSON task (not including
the trailing zero). Refer to the See Also section below for more information about TWAIN Direct.
When the operation is successfully completed, the application frees the
TW TWAI NDI RECT.Receive handle.

Source

The source only processes fields that fit within the range of TW TWAI NDI RECT.SizeOf (this is done
in case new fields are added in the future).

At this time the TW TWAI NDI RECT.CommunicationManager is informational only, but it may be
used at some future time to modify the way TWAIN Direct tasks are interpreted.

The task inside of the TW TWAI NDI RECT.Send bulffer is processed. The response is returned in the
TW TWAI NDI RECT.Receive buffer in UTF-8 JSON format as a NUL-terminated C-string. The
source allocates the handle for this and sets TW TWAI NDI RECT.ReceiveSize to the number of bytes
returned (not including the trailing zero).

The "scan" action is always ignored by TWAIN. The caller must use DG_CONTROL /

DAT_USERI NTERFACE / MSG_ENABLEDS with a TW USERI NTERFACE.ShowUI value of FALSE to
start scanning

TWAIN 2.4 Specification 7-101

Chapter 7

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADVALUE
TWCC_SEQERROR

See Also

“The TWAIN Direct Specification” - http:/ /www.twaindirect.org

7-102 TWAIN 2.4 Specification

http://www.twaindirect.org

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_USERI NTERFACE, MSG DI SABLEDS,
pUseriInterface);

pUser | nt er f ace = A pointer to a TW USERI NTERFACE structure.

Valid States

5 only (Transitions to State 4, if successful)

Description

This operation causes the Source’s user interface, if displayed during the DG_CONTRCL /
DAT_USERI NTERFACE / M5G_ENABLEDS operation, to be lowered. The Source is returned to
State 4, where capability negotiation can again occur. The application can invoke this operation
either because it wants to shut down the current session, or in response to the Source “posting” a
MSG_CLOSEDSREQevent to it. Rarely, the application may need to close the Source because an
error condition was detected.

Application

References the same pUser | nt er f ace structure as during the MSG_ENABLEDS operation. This
implies that the application keep a copy of this structure locally as long as the Source is enabled.

If the application did not display the Source’s built-in user interface, it will most likely invoke this
operation either when all transfers have been completed or aborted (TW PENDI NGXFERS.Count =
0).

Source

If the Source’s user interface is displayed, it should be lowered. The Source returns to State 4 and
is again available for capability negotiation.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session */
/* with application */
TWCC_SEQERROR /* Operation invoked in */
[* invalid state */

See Also

DG CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application)
DG CONTROL / DAT_USERI NTERFACE / MSG_ENABLEDS

Event loop information (in Chapter 3, "Application Implementation")

TWAIN 2.4 Specification 7-103

Chapter 7

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_USERI NTERFACE, MSG_ENABLEDS,
pUseriInterface);

pUser | nt erface = A pointer to a TW USERI NTERFACE structure

Valid States

4 only (Transitions to State 5, if successful)

Description

This operation causes three responses in the Source:

* Places the Source into a “ready to acquire” condition. If the application raises the Source’s user
interface (see #2, below), the Source will wait to assert M5SG_XFERREADY until the “GO” button
in its user interface or on the device is clicked. If the application bypasses the Source’s user
interface, this operation causes the Source to become immediately “armed”. That is, the Source
should assert MSG_XFERREADY as soon as it has data to transfer.

* The application can choose to raise the Source’s built-in user interface, or not, using this
operation. The application signals the Source’s user interface should be displayed by setting
pUserInterface->ShowUI to TRUE. If the application does not want the Source’s user interface
to be displayed, or wants to replace the Source’s user interface with one of its own, it sets
pUserInterface->ShowUI to FALSE. If activated, the Source’s user interface will remain
displayed until it is closed by the user or explicitly disabled by the application (see Note).

* Terminates Source’s acceptance of “set capability” requests from the application. Capabilities
can only be negotiated in State 4 (unless special arrangements are made using the
CAP_EXTENDEDCAPS capability). Values of capabilities can still be inquired in States 5 through
7.

Note: Once the Source is enabled, the application must begin sending the Source every event
that enters the application’s main event loop. The application must continue to send the
Source events until it disables (MSG_DI SABLEDS) the Source. This is true even if the
application chooses not to use the Source’s built-in user interface.

Application

Set pUser | nt er f ace->ShowUl to TRUE to display the Source’s built-in user interface, or to
FALSE to place the Source in an “armed” condition so that it is immediately prepared to acquire
data for transfer. Set ShowUI to FALSE only if bypassing the Source’s built-in user interface — that
is, only if the application is prepared to handle all user interaction necessary to acquire data from
the selected Source.

Sources are not required to be enabled without showing their User Interface (i.e.

TW USERI NTERFACE.ShowUI = FALSE). If a Source does not support ShowUI = FALSE, they will
continue to be enabled just as if ShowUI = TRUE, but return TWRC_CHECKSTATUS. The
application can check for this Return Code and continue knowing the Source’s User Interface is
being displayed.

7-104 TWAIN 2.4 Specification

Watch the value of pUser | nt er f ace->Modal Ul after the operation has completed to see if the
Source’s user interface is modal or modeless.

The application must maintain a local copy of pUser | nt er f ace while the Source is enabled.

* Windows: Set pUser | nt er f ace- >hPar ent to a handle (hWnd) to the window that will act
as the Source’s parent.

* Macintosh: Set pUser | nt er f ace- >hPar ent to NULL.
¢ Linux: Set pUser | nt er f ace- >hPar ent to NULL.

Note: Application should establish that the Source can supply compatible | CAP_PI XELTYPEs
and | CAP_BI TDEPTH:s prior to enabling the Source. The application must verify that the
Source can supply data of a type it can consume. If this operation fails, the application
should notify the user that the device and application are incompatible due to data type
mismatch. If the application diligently sets SupportedGroups in its identity structure
before it tries to open the Source, the Source Manager will, in the Select Source dialog or
through the M5G_GETFI RST/MSG_GETNEXT mechanism, filter out the Sources that don’t
match these SupportedGroups.

Source

If pUser I nt erf ace->ShowlJl is TRUE, the Source should display its user interface and wait for
the user to initiate an acquisition. If pUserInterface->ShowUI is FALSE, the Source should
immediately begin acquiring data based on its current configuration (a device that requires the
user to push a button on the device, such as a hand-scanner, will be “armed” by this operation and
will assert MSG_XFERREADY as soon as the Source has data ready for transfer). The Source should
fail any attempt to set a capability value (TWRC_FAI LURE / TWCC_SEQERROR) until it returns to
State 4 (unless an exception approval exists via a CAP_EXTENDEDCAPS agreement).

Set pUser | nt er f ace->Mbdal Ul to TRUE if your built-in user interface is modal. Otherwise, set
it to FALSE.

Note: If the application has set ShowUI or CAP_| NDI CATORS to TRUE, then the Source is
responsible for presenting the user with appropriate progress indicators regarding the
acquisition and transfer process. If Show Ul is set to TRUE, CAP_| NDI CATORS is ignored
and progress and errors are always shown.

Note: It is strongly recommended that all Sources support being enabled without their User
Interface if the application requests (TW USERI NTERFACE.ShowUI = FALSE). But if your
Source cannot be used without its User Interface, it should enable showing the Source
User Interface (just as if ShowUI = TRUE) but return TWRC_CHECKSTATUS. All Sources,
however, must support the CAP_UI CONTROLLABLE. This capability reports whether or
not a Source allows ShowUI = FALSE. An application can use this capability to know
whether the Source-supplied user interface can be suppressed before it is displayed.

Return Codes

TWRC_SUCCESS
TWRC _CHECKSTATUS /* Source cannot enabl e */

TWAIN 2.4 Specification 7-105

Chapter 7

/* without User Interface */

/* so it enabled with the */

/* User Interface. */
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_LOWEMORY /* Not enough nmenory to open */
/* the Source */
TWCC_OPERATI ONERROR /* Internal Source error; */
/* handl ed by the Source */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */
TWCC_NOMVEDI A /* Source has nothing to capture */

See Also

DG _CONTROL / DAT_NULL / MSG _CLOSEDSREQ (from Source to Application)
DG _CONTROL / DAT_USERI NTERFACE / MSG_DI SABLEDS

Capability - CAP_I NDI CATORS

Event loop information (in Chapter 3, "Application Implementation")

7-106 TWAIN 2.4 Specification

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

Call
DSM Entry(pOrigin, pDest, DG CONTROL, DAT_USERI NTERFACE,
MSG_ENABLEDSUI ONLY, pUserlnterface);
pUser | nt er f ace = A pointer to a TW USERI NTERFACE structure.
Valid States
4 only (transitions to State 5, if successful)
Description

This operation is very similar to DG_CONTROL/ DAT_USERI NTERFACE/ M5G_ENABLEDS
operation except that no image transfer will take place. This operation is used by applications that
wish to display the source user interface to allow the user to manipulate the sources current
settings for DPI, paper size, etc. but not acquire an image. The ShowUI member of the

TW USERI NTERFACE structure is ignored since this operations only purpose is to display the
source UIl. The other members of the TW USERI NTERFACE structure have the same meaning as in
the DG_CONTROL/ DAT_USERI NTERFACE/ MSG_ENABLEDS operation.

This operation has the following effects.
* The source transitions from state 4 to state 5. The source will display its user interface dialog

but will not have a scan button (unless its only purpose is to preview the image).

* The application must begin sending the Source every event that enters the applications main
event loop. This mechanism is the same as in the M5G_ENABLEDS operation.

* When the user hits OK or cancel from the source user interface dialog the source will send
either M5G_CLOSEDSOK or MSG_CLOSEDSREQMessage.

* To close the source the application will respond back by sending a DG_CONTROL /
DAT_USERI NTERFACE / M5G_DI SABLEDS. This source closes the dialog and then transitions
from state 5 back to state 4 .

TWAIN 2.4 Specification 7-107

Chapter 7

DG_CONTROL / DAT_XFERGROUP / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG CONTROL, DAT_ XFERGROUP, MsG GET,
pXf er G oup) ;

pXf er Gr oup = A pointer to a TW Ul NT32 value.

Valid States

4 through 6

Description

Returns the Data Group (the type of data) for the upcoming transfer. The Source is required to
only supply one of the DGs specified in the SupportedGroups field of pOri gi n.

Application

Should have previously (during a DG_CONTROL / DAT_PARENT / M5G_CPENDSM set pOri gi n.
SupportedGroups to reflect the DGs the application is interested in receiving from a Source. Since
DG_xxxx identifiers are bit flags, the application can perform a bitwise OR of DG_xXXX constants
of interest to build the Suppor t edG oups field (this is appropriate when more kinds of data than
DG_| MACE are available).

Note: Version 1.x of the Toolkit defines DG_| MAGE and DG_AUDI Oas the sole Data Groups
(DG_CONTRQL is masked from any processing of Suppor t edG oups). Future versions of
TWAIN may define support for other DGs.

Source

Set pXf er G oup to the DG_xxxXx constant that identifies the type of data that is ready for transfer
from the Source (DG_| MAGE is the only non-custom Data Group defined in TWAIN version 1.x).

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session with */
/* application */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also
DG CONTROL / DAT_XFERGROUP / MSG_SET

7-108 TWAIN 2.4 Specification

DG_CONTROL / DAT_XFERGROUP / MSG_SET

Call
DSM Entry (pOrigin, pDest, DG CONTROL, DAT_XFERGROUP,
MSG_SET, pXFer Group);
pXf er Gr oup = A pointer to a TW Ul NT32 value.
Valid States
6 only
Description

The transfer group determines the kind of data being passed from the Source to the Application.
By default a TWAIN Source must default to DG_| MAGE. Currently the only other data group
supported is DG_AUDI O, which is a feature supported by some digital cameras.

An Application changes the data group in State 6 to indicate that it wants to transfer any audio
data associated with the current image. The transfers follow the typical TWAIN State 6 - State 7 -
State 6 pattern for each audio snippet transferred. When the application is done transferring
audio data it must change back to DG_| MAGE in order to move on to the next image or to end the
transfers and return to Stateb.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC _BADDEST — no such Source in session with application.
TWCC BADPROTOCOL - capability not supported.
TWCC_SEQERROR - not state 6.

See Also
DG CONTROL / DAT_XFERGROUP / MSG GET

TWAIN 2.4 Specification 7-109

Chapter 7

DG_IMAGE / DAT_CIECOLOR / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT_Cl ECOLOR, MsSG GET, pClECol or);

pCIEColor = A pointer to a TW Cl ECOLOR structure.

Valid States

4 through 6

Description

Background - The DAT_ClI ECOLOR data argument type is used to communicate the parametrics
for performing a transformation from any arbitrary set of tri-stimulus values into CIE XYZ color
space. Color data stored in this format is more readily manipulated mathematically than some
other spaces. Go to http://www.cie.co.at/ for more information about CIE XYZ Color Space.

This operation causes the Source to report the currently active parameters to be used in converting
acquired color data into CIE XYZ.

Application

Prior to invoking this operation, the application should establish that the Source can provide data
in CIE XYZ form. This can be determined by invoking a M5G_GET on | CAP_PI XELTYPE. If
TWPT_ClI EXYZ is one of the supported types, then these operations are valid. The application can
specify that transfers should use the CIE XYZ space by invoking a MSG_SET operation on

| CAP_PI XELTYPE using a TW ONEVALUE container structure whose value is TWPT_Cl EXYZ.

No special set up is required. Invoking this operation following the transfer (after the Source is
back in State 6) will guarantee that the exact parameters used to convert the image are reported.

Source

Fill pCIEColor with the current values applied in any conversion of image data to CIE XYZ. If no
values have been set by the application, fill the structure with either the values calculated for this
image or the Source’s default values, whichever most accurately reflect the state of the Source.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC _BADPROTOCOL /* Source does not support the */

/* ClE descriptors */
TWCC_SEQERROR /* Operation invoked in invalid */

/* state */

See Also

Capability -1 CAP_PI XELTYPE
Chapter A, "TWAIN Articles"

7-110 TWAIN 2.4 Specification

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_EXTI MAGEI NFO, MsSG_CET,
pExt I magel nf o) ;
pExtImagelnfo = A pointer to a TW EXTI MAGEI NFOstructure.
Valid States
7 only, after receiving TWRC_XFERDONE
Description
This operation is used by the application to query the data source for extended image attributes,
.e.g. bar codes found on a page. The extended image information will be returned in a
TW _EXTI MAGEI NFOstructure.
Application
To query extended image information, set the pExt | magel nf o fields as follows:
The Application will allocate memory for the necessary container structure, the source will fill the
values, and then application will free it up.
pExt I magel nf o- >Num nf os = Desi red nunber of information;
pExt I magel nfo->I nfo[0] . I nfol D = TWEl _XXXX;
pExt I magel nfo->I nfo[1] .1 nfol D = TWEl _XXXX;
Source

If the application requests information that the Source does not recognize, the Source should put
TWRC_| NFONOTSUPPORTED in the ReturnCode field of TW | NFOstructure.

pExt | magel nf o- >I nf o[0] . Ret ur nCode = TWRC_| NFONOT SUPPORTED;

If the application requests information that the Source recognizes but is currently not available,
the Source should put TWRC_DATANOTAVAI LABLE in the ReturnCode field of TW | NFOstructure.

pExt I magel nf o- >l nf o[0] . Ret ur nCode = TWRC_DATANOTAVAI LABLE;

If you support the capability, fill in the fields allocating extra memory if necessary. For example,
for TVWEI _ BARCODEX:

pExt | magel nf o- >l nf o[0] . Ret ur nCode = TWRC_SUCCESS;

TWIY_UI NT32;

1;

pExt | magel nfo->I nfo[0].|tenType

pExt | magel nf o->I nfo[0] . Num t ens
pExt | magel nfo->Info[0].Item = 20;

TWAIN 2.4 Specification 7-111

Chapter 7

For TVEI _ FORMIEMPLATENATCH:

pExt I magel nf o- >I nf o[0] . Ret Code = TWRC_SUCCESS;
pExt I magel nfo->I nfo[0] . 1temType = TWY_STR255;
pExt I magel nfo->Info[0]. Nuntens = 1;
pExt I magel nfo->Info[0].ltem = d obal All oc(GHND, sizeof (TW STR255));

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE
TWCC_BADPROTOCOL /* Source does not support extended i mage */
/[* information */
TWCC SEQERROR /* Not State 7, or in State 7 but TWRC_XFERDONE */
/* has not been received yet */
TWCC_NOVEDI A /* Source has nothing to capture */

See Also
Capability | CAP_EXTI MAGEI NFO, | CAP_SUPPORTEDEXTI MAGEI NFO

7-112 TWAIN 2.4 Specification

DG_IMAGE / DAT_FILTER / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG |IMAGE, DAT _FILTER, MSG GET, pFilter);
pFi | t er = A pointer to a TW FI LTER structure.

Valid States
4 through 6

Description
Causes the Source to return the filter parameters that will be used during the next image
acquisition.
TW FI LTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may be applied to a single acquisition.

Application
The Application allocates the TW FI LTER structure. The Source will allocate memory for the
TW FI LTER _DESCRI PTCRarray if any. TW FI LTER/ Descr i pt or s field specifies the number
of elements in the array returned in hDescr i pt or s. The size of the TW FI LTER_DESCRI PTOR
structure may vary across the versions, so use the TW FI LTER _DESCRI PTOR/ Si ze filed to step
through the array. The Application has to deallocate hDescr i pt or s after it is not needed
anymore.

Source

Fill pFi | t er with the filter parameters that will be applied during the next acquisition.

The Source must allocate memory for the TW FI LTER_DESCRI PTOR array if any. The Source
must check the TW FI LTER/ Si ze field to see which of the structure fields it can fill.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC _BADPROTOCOL /* Source does not support it */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_FILTER / MSG_GETDEFAULT
DG | MAGE / DAT_FILTER / MSG_SET
DG | MAGE / DAT_FILTER / MSG_RESET

Capability - | CAP_FI LTER

TWAIN 2.4 Specification 7-113

Chapter 7

DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, pDest, DG |IMAGE, DAT _FILTER, MSG GET, pFilter);

pFi | t er = A pointer to a TW FI LTER structure.

Valid States

4 through 6

Description
Causes the Source to return the power-on default values applied to the filter.

Source will fill TW FI LTER structure fields Descri pt or s and hDescri pt or s with 0. This
means no filter will be applied.

TW FI LTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may apply to a single acquisition.

Application

The Application allocates the TW FI LTER structure. The Source will allocate memory for the
TW FI LTER _DESCRI PTORarray if any. The TW FI LTER/ Descri pt or s field specifies the
number of elements in the array returned in hDescr i pt or s. The size of the

TW FI LTER_DESCRI PTOR structure may vary across the versions, so use the

TW FI LTER _DESCRI PTOR/ Si ze filed to step through the array. The Application has to
deallocate hDescr i pt or s after it is not needed anymore.

Source
Fill pFi | t er with the filter parameters that will be applied during the next acquisition.

The Source must allocate memory for the TW FI LTER_DESCRI PTOR array if any. The Source
must check the TW FI LTER/ Si ze field to see which of the structure fields it can fill.
Return Codes
TWRC_SUCCESS
TVRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support it */
TWCC_SEQERROR [* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_FILTER / MSG GET
DG | MAGE / DAT_FILTER / MSG_SET
DG | MAGE / DAT_FILTER / MSG_RESET

Capability - | CAP_FI LTER

7-114 TWAIN 2.4 Specification

DG_IMAGE / DAT_FILTER / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_FILTER, MSG SET, pFilter);

pFi | t er = A pointer to a TW FI LTER structure.

Valid States

4 only

Description

Allows the Application to configure the filter parameters that will be used during the next image
acquisition.

TW FI LTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may be applied to a single acquisition.

If the Source supports DAT_FI LTER as well, then it will apply the filter set by the last SET
operation invoked by the Application. Setting/Resetting | CAP_FI LTER will clear the filter
associated with DAT_FI LTER. Setting/Resetting DAT_FI LTERwill clear the filter associated with
| CAP_FI LTER

Application

The Application allocates the TW FI LTER structure. The Application also has to allocate memory
for the TW FI LTER_DESCRI PTOR array if any. The TW FI LTER/ Descri pt ors field specifies
the number of elements in the array in hDescr i pt or s. If this number exceeds the TW FI LTER/
MaxDescr i pt or s returned by any GET operation, then the Source will accept only the allowed
number of descriptors and it will return TWRC_CHECKSTATUS.

Source

Adopt the requested filter parameters that will be applied during the next acquisition. If a value
does not exactly match an available value, match the value as closely as possible and return
TWRC_CHECKSTATUS. If the value is beyond the range of available values, clip to the nearest value
and return TWRC_FAI LURE/ TWCC_BADVAL UE.

The Source must check the TW FI LTER/ Si ze field to see which of the structure fields are valid.
The size of the TW FI LTER_DESCRI PTOR structure may vary across the versions, so use the
TW FI LTER _DESCRI PTOR/ Si ze filed to step through the array.

The Source must discard all previously set filter parameters.
Return Codes
TWRC_SUCCESS

TWRC _CHECKSTATUS /* value(s) could not be matched exactly */
TWRC_FAI LURE

TWAIN 2.4 Specification 7-115

Chapter 7

TWCC_BADPROTOCOL /* Source does not support it */

TWCC_BADVALUE /* illegal value(s) */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_FILTER / MSG GET
DG | MAGE / DAT_FILTER / MSG_GETDEFAULT
DG | MAGE / DAT_FILTER / MSG_RESET

Capability - | CAP_FI LTER

7-116 TWAIN 2.4 Specification

DG_IMAGE / DAT_FILTER / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG |IMAGE, DAT _FILTER, MSG SET, pFilter);
pFi | t er = A pointer to a TW FI LTER structure.

Valid States

4 only

Description
Return the Source to using its power-on default values when it is applying the filter.

Source will fill TW_FI LTER structure fields Descri pt or s and hDescri pt or s with 0. This
means no filter will be applied.

TW FI LTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may be applied to a single acquisition.

If the Source supports DAT_FI LTER as well, then it will apply the filter set by the last SET
operation invoked by the Application. Setting/Resetting | CAP_FI LTER will clear the filter
associated with DAT_FI LTER. Setting/Resetting DAT_FI LTER will clear filter associated with
| CAP_FI LTER

Application

The application allocates the TW FI LTER structure. The Source will allocate memory for the
TW FI LTER_DESCRI PTOR array if any. The TW FI LTER/ Descri pt ors field specifies the
number of elements in the array returned in hDescri pt or s. The size of the

TW FI LTER_DESCRI PTOR structure may vary across the versions, so use the

TW FI LTER_DESCRI PTOR/ Si ze filed to step through the array. The Application has to
deallocate hDescr i pt or s after it is not needed anymore.

Source
Fill pFi | t er with the filter parameters that will be applied during the next acquisition.

The Source must allocate memory for the TW FI LTER_DESCRI PTOR array if any. The Source
must check TW FI LTER/ Si ze field to see which of the structure fields it can fill.

Return Codes
TWRC _SUCCESS
TWRC FAI LURE

TWCC_BADPROTOCOL /* Source does not support it */
TWCC_SEQERROR [* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_FILTER / MSG GET

DG | MAGE / DAT_FILTER / MSG_GETDEFAULT
DG | MAGE / DAT_FILTER / MSG_SET
Capability - | CAP_FI LTER

TWAIN 2.4 Specification 7-117

Chapter 7

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT_CGRAYRESPONSE, MSG_RESET,
pResponse) ;
pResponse = A pointer to a TW GRAYRESPONSE structure.

Valid States
4 only

Description
Background - The two DAT_CGRAYRESPONSE operations allow the application to specify a transfer
curve that the Source should apply to the grayscale it acquires. This curve should be applied to
the data prior to transfer. The Source should maintain an “identity response curve” to be used
when it is MSG_RESET.
The MSG_RESET operation causes the Source to use its “identity response curve.” The identity
curve causes no change in the values of the captured data when it is applied.

Application
No special action.

Source

Apply the identity response curve to all future grayscale transfers. This means that the Source
will transfer the grayscale data exactly as acquired.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support */
/* grayscal e response curves */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_CRAYRESPONSE / MSG_SET

Capability - | CAP_PI XELTYPE

7-118 TWAIN 2.4 Specification

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_GRAYRESPONSE, MsG_SET,
pResponse) ;
pResponse = A pointer to a TW GRAYRESPONSE structure.

Valid States
4 only

Description
Background - The two DAT_CGRAYRESPONSE operations allow the application to specify a transfer
curve that the Source should apply to the grayscale it acquires. This curve should be applied to
the data prior to transfer. The Source should maintain an “identity response curve” to be used
when it is MSG_RESET. This identity curve should cause no change in the values of the data it is
applied to.
This operation causes the Source to transform any grayscale data according to the response curve
specified.

Application
All three elements of the response curve for any given index should hold the same value (the
curve is stored in a TW ELEMENT8 which contains three “channels” of data). The Source may not
support this operation. The application should be diligent to examine the return code from this
operation.

Source

Apply the specified response curve to all future grayscale transfers. The transformation should be
applied before the data is transferred.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support */
/* grayscal e response curves */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_CRAYRESPONSE / MSG_RESET

Capability - | CAP_PI XELTYPE

TWAIN 2.4 Specification 7-119

Chapter 7

DG_IMAGE / DAT_ICCPROFILE / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_ I CCPROFILE, MSG_CET,
pl CCProfile);

pl CCPr of i | e = A pointer to a TW MEMORY structure.

Valid States

6or7

Description

This operation provides the application with the ICC profile associated with the image which is
about to be transferred (state 6) or is being transferred (state 7).

Application

The application can use the operation to retrieve an ICC profile associated with image data. This
profile could then be used to transform the image to sSRGB or to embed into a JPEG or TIFF file
that the application is writing. If the application is having the source write the file

(I CAP_XFERMECH of TWEX_FI LE), then there is no need to call this triplet and the capability

| CAP_| CCPRCFI LE should be used. It is important that the application not allocate the memory
itself. Although a TW MEMORY structure is used, the memory is always allocated by the source.
The application should set the entire structure to zero. Note that not all sources will have profiles
and some might have profiles for color data but not for grayscale data.

The profile returned always applies to the current data being transferred and not the image being
currently scanned. This distinction is important for scanners that buffer pages since the data being
transferred is most likely not the image being currently scanned.

For optimization, it is recommended that applications attempt to only call this on an as needed
basis. In general, the application calls this once for each batch. However, it is important to note
any changes in the pixeltype during a batch because changes in pixeltype will mandata a change
in profile. While most scanners will not change the pixeltype int eh middle of a batch, those with
job control sheets may do so.

Source

Allocates the TheMem member and sets the Flags member to have TWWF_DSOWNS. Fills in the
Length member.

It is recommended that sources obey platform specific rules about locations for profile files. When

possible, it is desirable to store the profiles in the platform specific location and then to read that
profile and send the data back to the location.

See Also

Capability - | CAP_I CCPRCFI LE

7-120 TWAIN 2.4 Specification

The new | CAP_PI XELTYPE values are:

TWPT_CI ELAB
TWPT_SRGB Specifies that the data coming back has been calibrated to sRGB

If a source supports TWPT_SRGB, it must also support TWPT_RGB for backwards compatibility. If it
only has SRGB data, then it should still support TWPT_RGB and pass back its sSRBG data in that
mode.

TWAIN 2.4 Specification 7-121

Chapter 7

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT | MAGEFI LEXFER, MSG GET, NULL);

This operation acts on NULL data. File information can be set with the DG_CONTROL /
DAT_SETUPFI LEXFER / MSG_SET operation.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via the
disk-file transfer mechanism. It causes the transfer to begin.

Application

No special set up or action required. Application should have already invoked the DG_CONTRCL
/ DAT_SETUPFI LEXFER / M5G_SET operation unless the Source’s default transfer format and
file name (typically, TWAI N. TMP) are acceptable to the application. The application need only
invoke this operation once per image transferred.

Note: If the application is planning to receive multiple images from the Source while using the
Source’s default file name, the application should plan to pause between transfers and
copy the file just written. The Source will overwrite the file unless it is instructed to write
to a different file.

Note: Applications can specify a unique file for each transfer using DG_CONTROL /
DAT_SETUPFI LEXFER / M5G_SET operation in State 6 or 5 (and 4, of course).

Source

Acquire the image data, format it, create any appropriate header information, and write
everything into the file specified by the previous DG_CONTROL / DAT_SETUPFI LEXFER /
MSG_SET operation, and close the file.

Handling Possible File Conditions:

* If the application did not set conditions up using the DAT_SETUPFI LEXFER / M5G_SET
operation during this session, use your own default file name, file format, and location for the
created file.

¢ If the specified file already exists, overwrite the file in place.
* If the specified file does not exist, create the file.

* If the specified file exists and cannot be accessed, or a system error occurs while writing the file,
report the error to the user and return TWRC_FAI LURE with TWCC_OPERATI ONERRCR. Stay in

7-122 TWAIN 2.4 Specification

State 6. The file contents are invalid. The image whose transfer failed is still a pending transfer
so do not decrement TW PENDI NGXFERS. Count .

* If the file is written successfully, return TWRC_XFERDONE.
¢ If the user cancels the transfer, return TWRC_ CANCEL.

Return Codes
TWRC_XFERDONE
TWRC_CANCEL
TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_OPERATI ONERROR /[* Failure in the Source -- */
/* transfer invalid */

TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

/* The follow ng introduced for 2.0 or higher */
TWCC_FI LEWRI TEERROR

TWCC_| NTERLOCK /* Cover or door is open */
TWCC_DAMAGEDCORNER /* Docurent has a damaged corner */
TWCC_FOCUSERROR /* Focusi ng error during docunent capture */
TWCC_DOCTOOLI GHT /* Document is too |ight */
TWCC_DOCTOODARK /* Docunent is too dark */

TWCC_NOVEDI A /* Source has nothing to capture */

See Also

DG _CONTROL / DAT_SETUPFI LEXFER / MSG_SET
DG | MAGE / DAT_| MAGEMEMFI LEXFER / MSG_GET
DG | MAGE / DAT_| MAGEI NFO / MSG_GET

DG | MAGE / DAT_I MAGELAYOUT / MSG_GET

Capabilities - | CAP_XFERMECH, | CAP_| MAGEFI LEFORVAT

TWAIN 2.4 Specification 7-123

Chapter 7

DG_IMAGE / DAT_IMAGEINFO / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT I MACEI NFO MSG _CET, pl magel nfo);

pl magel nf o = A pointer to a TW | MAGEI NFOstructure.

Valid States

6 and 7 (State 7 only after receiving TWRC_XFERDONE)

Description

When called in State 6, this operation provides to the application general image description
information about the image about to be transferred.

When called in State 7, this operation provides the Application with specific image description
information about the current image that has just been transferred. It is important during a
Memory transfer to call this triplet only after TWRC_XFERDONE is received, since that is the only
time the Source will know all the final image information.

The same data structure type is used regardless of the mechanism used to transfer the image
(Native, Disk File, or Buffered Memory transfer).

Application

The Application can use this operation to check the parameters of the image before initiating the
transfer during State 6, or to clarify image parameters during State 7 after the transfer is complete.

Applications may inform Sources that they accept -1 value for | mageHei ght / | mageW dt h by
setting the | CAP_UNDEFI NEDI MAGESI ZE capability to TRUE.

Should the Application decide to invoke any Source features that allow the image description
information to change during scanning (such as | CAP_UNDEFI NEDI MAGESI ZE) and still wish to
transfer in Buffered memory mode, a DG_CONTROL / DAT_| MAGEI NFO/MSG_GET call must be
made in State 7 after receiving TWRC_XFERDONE to properly interpret the image data. This is not
the default behavior of the Source.

Note that the speed at which the Application supplies buffers may determine the scanning speed.

Source

For maximum compatibility with applications, Data Source writers are strongly encouraged to
report back finished image values in State 6. In other words, calls to DAT_| MAGEI NFOshould
return the same identical values in State 6, and in State 7 after TWRC _XFERDONE has been issued to
the application.

During State 6 - Fills in all fields in pImagelnfo. All fields are filled in as you would expect with
the following exceptions:

7-124 TWAIN 2.4 Specification

XResolution or YResolution
Set to -1 if the device creates data with no inherent resolution (such as a digital camera).
ImageWidth

Set to -1 if the image width to be acquired is unknown (such as when using a hand-held
scanner and dragging left-to-right) , and the Application has set

| CAP_UNDEFI NEDI MAGESI ZE to TRUE. In this case the Source must transfer the image in
tiles.

ImageLength

| mmgeLengt h—Set to -1 if the image length to be acquired is unknown (such as when using a
hand-held scanner and dragging top-to-bottom), and the Application has set
| CAP_UNDEFI NEDI MAGESI ZE to TRUE.

During State 7 - Fills in all fields in pImagelnfo. All fields are filled in as during State 6, except
ImageWidth and ImageLength MUST be valid. Source shall return TWRC_SEQERRCRIf call is
made before TWRC XFERDONE is sent.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session with */

/* application */
TWCC SEQERROR /* Operation invoked in invalid */

/* state */

See Also

DG | MAGE / DAT_| MAGEFI LEXFER / MSG_GET
DG | MAGE / DAT_| MAGEMEMFI LEXFER / MSG_GET
DG | MAGE / DAT_| MAGEMEMXFER / MBG GET
DG | MAGE / DAT_| MAGENATI VEXFER / MSG_GET

Capabilities - | CAP_BI TDEPTH, | CAP_COMPRESSI ON, | CAP_PI XELTYPE,
| CAP_PLANARCHUNKY, | CAP_XRESOLUTI ON, | CAP_YRESOLUTI ON

TWAIN 2.4 Specification 7-125

Chapter 7

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_I MAGELAYQUT, MsSG GET,
pl magelLayout) ;

pl mageLayout = A pointer to a TW | MAGELAYQUT structure.

Valid States

4 through 6

Description

The DAT_| MAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).

The MSG_GET operation describes both the size and placement of the image on the scanner. The
coordinates on the scanner and the extents of the image are expressed in the unit of measure
currently negotiated for | CAP_UNI TS (default is inches).

The outline of the image is expressed by a “frame.” The Left, Top, Right, and Bottom edges of the
frame are stored in pl mageLayout ->Fr ame. These values place the frame within the scanner.
All measurements are relative to the scanner’s “upper-left” corner. Define “upper-left” by how
the image would appear on the computer’s screen before any rotation or other position transform
is applied to the image data. This origin point will be apparent for most Sources (although folks

working with satellites or radio telescopes may be at a bit of a loss).

Finally pl mageLayout optionally includes information about which frame on the page, which
page within a document, and which document the image belongs to. These fields were included
mostly for future versions which could merge more than one type of data. A more immediate use
might be for an application that needs to keep track of which frame on the page an image came
from while acquiring from a Source that can supply more than one image from the same page at
the same time. The information in this structure always describes the current image. To set
multiple frames for any page simultaneously, reference | CAP_FRAMES.

Application

No special set up or action required, unless the current units of measure are unacceptable. In that
case, the application must re-negotiate | CAP_UNI TS prior to invoking this operation. Remember
to do this in State 4 — the only state wherein capabilities can be set or reset.

Beyond supplying possibly interesting position information on the image to be transferred, the
application can use this structure to constrain the final size of the image and to relate the image
within a series of pages or documents (see the DG_| MAGE / DAT_I MAGELAYQOUT / M5G_SET
operation).

7-126 TWAIN 2.4 Specification

Source

Fill all fields of pl mageLayout . Most Sources will set Fr aneNunber , PageNunber , and
Docunent Nunber to 1.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_| MAGELAYOUT / MSG_GETDEFAULT
DG | MAGE / DAT_| MAGELAYOUT / MSG_RESET
DG | MAGE / DAT_| MAGELAYOUT / MSG_SET

Capabilities - Many such as | CAP_FRANMES, | CAP_MAXFRAMES, | CAP_UNI TS

TWAIN 2.4 Specification 7-127

Chapter 7

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGELAYQUT, MsG_GETDEFAULT,
pl magelLayout) ;
pl mageLayout = A pointer to a TW | MAGELAYQUT structure.

Valid States
4 through 6

Description
The DAT_| MAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).
This operation returns the default information on the layout of an image. This is the size and
position of the image that will be acquired from the Source if the acquisition is started with the
Source (and the device it is controlling) in its power-on state (for instance, most flatbed scanners
will capture the entire bed).

Application
No special set up or action required.

Source

Fill in all fields of pl mageLayout with the device’s power-on origin and extents. Most Sources
will set Fr ameNunber, PageNunber , and Docunent Nunber to 1.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_| MAGELAYOUT / MSG GET
DG | MAGE / DAT_| MAGELAYOUT / MSG_SET
DG | MAGE / DAT_| MAGELAYOUT / MSG RESET

Capabilities - | CAP_FRANMES, | CAP_MAXFRANES, | CAP_UNI TS

7-128 TWAIN 2.4 Specification

DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGELAYQUT, MsG_RESET,
pl magelLayout) ;
pl mageLayout = A pointer to a TW | MAGELAYQUT structure.
Valid States
4 only
Description
The DAT_| MAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).
This operation sets the image layout information for the next transfer to its default settings.
Application
No special set up or action required. Ascertain the current settings of | CAP_CRI ENTATI CON,
| CAP_PHYSI CALW DTH, and | CAP_PHYSI CALHEI GHT if you don’t already know this device’s
power-on default values.
Source

Reset all the fields of the structure pointed at by pImageLayout to the device’s power-on origin
and extents. There is an implied resetting of | CAP_CORI ENTATI ON, | CAP_PHYSI CALW DTH, and
| CAP_PHYSI CALHEI GHT to the device’s power-on default values.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session */

/* with application */
TWCC_SEQERROR /* Operation invoked in invalid */

/* state */

See Also

DG | MAGE / DAT_I MAGELAYOUT / MSG GET
DG | MAGE / DAT_| MAGELAYOUT / MSG_GETDEFAULT
DG | MAGE / DAT_| MAGELAYOUT / MSG_SET

Capabilities - | CAP_FRAMES, | CAP_MAXFRANES, | CAP_UNI TS

TWAIN 2.4 Specification 7-129

Chapter 7

DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_I MAGELAYQUT, MsSG_SET,
pl magelLayout) ;

pl mageLayout = A pointer to a TW | MAGELAYQUT structure.

Valid States

4 only

Description

The DAT_| MAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).

This operation sets the layout for the next image transfer. This allows the application to specify
the physical area to be acquired during the next image transfer (for instance, a frame-based
application would pass to the Source the size of the frame the user selected within the
application — the helpful Source would present a selection region already sized to match the
layout frame size).

If the application and Source have negotiated one or more frames through | CAP_FRAMES, the
frame set with this operation will only persist until the transfer following this one. Otherwise, the
frame will persist as the current frame for the remainder of the session (unless superseded by
negotiation on | CAP_FRAMES or another operation on DAT_| MAGELAYQUT overrides it).

The application writer should note that setting these values is a request. The Source should first try
to match the requested values exactly. Failing that, it should approximate the requested values as
closely as it can—extents of the approximated frame should at least equal the requested extents
unless the device cannot comply. The Source should return TWRC_CHECKSTATUS if the actual
values set in pl mageLayout ->Fr ame are greater than or equal to the requested values in both
extents. If one or both of the requested values exceed the Source’s available values, the Source
should return TWRC_FAI LURE with TWCC_BADVALUE. The application should check for these
return codes and perform a MSG_CET to verify that the values set by the Source are acceptable.
The application may choose to cancel the transfer if Source could not set the layout information
closely enough to the requested values.

Application

Fill in all fields of pImageLayout. Especially important is the Frame field whose values are
expressed in | CAP_UNI TS. If the application doesn’t care about one or more of the other fields, be
sure to set them to -1 to prevent confusion. If the application only cares about the extents of the
Frame, and not about the origin on the page, set the Fr anme. Top and Fr ane. Left to zero.
Otherwise, the application can specify the location on the scanner where the Source should begin
acquiring the image, in addition to the extents of the acquired image.

7-130 TWAIN 2.4 Specification

Source

Use the values in pImageLayout as the Source’s current image layout information. If you are
unable to set the device exactly to the values requested in the Frame field, set them as closely as
possible, always snapping to a value that will result in a larger frame, and return
TWRC_CHECKSTATUS to the application.

If the application sets Fr are. Top and Fr anme. Left to zero, then the Source should set the frame
taking into consideration the default alignment set through CAP_FEEDERAL| GNVENT.

If the application has set Fr ane. Top and Fr ane. Lef t to a non-zero value, set the origin for the
image to be acquired accordingly. If possible, the Source should consider reflecting these settings
in the user interface when it is raised. For instance, if your Source presents a pre-scan image,
consider showing the selection region in the proper location and with the proper size suggested
by the settings from this operation.

If the requested values exceed the maximum size the Source can acquire, set the
pl mageLayout ->Fr ame values used within the Source to the largest extent possible within the
axis of the offending value. Return TWRC_FAI LURE with TWCC_BADVAL UE.

Return Codes
TWRC_SUCCESS

TWRC_CHECKSTATUS /* Source approxi mated the requested*/
[* val ues */

TWRC_FAI LURE

TWCC BADDEST /* No such Source in-session */
/* with application */
TWCC_BADVALUE /* Specified Layout values illegal */
/* for Source */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_| MAGELAYOUT / MSG GET
DG | MAGE / DAT_| MAGELAYOUT / MBG GETDEFAULT
DG | MAGE / DAT_| MAGELAYOUT / MSG RESET

Capabilities - | CAP_FRAMES, | CAP_MAXFRANMES, | CAP_UNI TS

TWAIN 2.4 Specification 7-131

Chapter 7

DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

7-132

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MVAGEMEMFI LEXFER, MSG_GET,
pl mageMemXf er) ;
pl mgeMenXf er = A pointer to a TW | MAGEMEMXFER structure.
File format information can be set with the DG_CONTRCL / DAT_SETUPFI LEXFER / MSG_SET
operation.
Valid States
6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation.)
Description
This operation is used to initiate the transfer of an image from the Source to the application via the
Memory-File transfer mechanism.
This operation supports the transfer of successive blocks of an image file from the Source into one
or more main memory transfer buffers. These buffers are allocated and owned by the application.
The application should repeatedly invoke this operation while TWRC_SUCCESS is returned by the
Source.
Application

No special set up is required. The application should have already invoked the DG_CONTRCOL /
DAT_SETUPFI LEXFER / M5G_SET operation unless the Source’s default file format is acceptable
to the application (the filename is not used, since this transfer is being done in memory). The
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation should be used to determine the
valid range of sizes for transferring the image. The application only needs to invoke both of these
operations once per image transferred.

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area while
the complete image is assembled elsewhere (on disk, for instance).

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAI LURE/ TWCC_BADVALUE.

Once the buffers have been set up, the application should fill
pl mgeMenXf er - >Menor y. Lengt h with the actual size (in bytes) of each memory buffer
(which are, of course, all the same size).

Notes: Applications can specify a unique file format for each transfer using DG_CONTRCL /
DAT_SETUPFI LEXFER / MSG_SET in State 6 or 5 (and 4 also). Also note that although the images
are being transferred in complete image formats, they are memory transfers, and will be chunked
just like a DG_| MAGE / DAT_I MAGEMEMXFER / MSG_GET operation.

TWAIN 2.4 Specification

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTRCL / DAT_SETUPMEMXFER / MSG_CET operation. The application
should do its best to allocate transfer buffers of the size “preferred” by the Source. This will
enhance the chances for superior transfer performance. The buffer size must be between
MinBufSize and MaxBufSize as reported by the Source.

There is no concept of striping or tiling when using this operation. Data is transferred in generic
chucks, which, depending on the file format, may result in partial header or footer information
being sent in any given transfer. Applications are advised to avoid parsing the image format data
until all of the blocks have been transferred

Source

If the application did not set up the conditions via the DAT_SETUPFI LEXFER / M5G_SET
operation during this session, use the Source’s default file format for the transfer.

Prior to writing the first buffer, check pl mageMenXf er - >Menor y. Lengt h for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer
size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MSG_GET operation, return TWRC_FAI LURE/ TWCC_BADVALUE and remain in State 6.

If the buffer is of an acceptable size, fill in all fields of pl mageMenXf er except pImageMemXfer-
>Memory. The Source must write the data block into the buffer referenced by pl mageMenXf er -
>Menor y. TheMemand store the actual number of bytes written into the buffer in

pl mgeMenXf er - >Byt esWi t t en. Compressed and tiled data effects how the Source fills in

these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the Source
needs to terminate the transfer before the last buffer is written (as when the user aborts the
transfer from the Source’s user interface). Return TWRC _XFERDONE to signal that the last buffer
has been written. Following completion of the transfer, either after all the data has been written or

the transfer has been canceled, remain in State 7 until explicitly transitioned back to State 6 by the
application (DG_CONTROL / DAT_PENDI NGXFERS / M5G_ENDXFER).

If TWRC_FAI LURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the image
that was being transferred and assure that any temporary variable and local buffer allocations are
eliminated. The Source should be wary of allocating large temporary buffers or variables. Doing
so may disrupt or even disable the transfer process. The application should be aware of the
possible needs of the Source to allocate such space, however, and consider allocating all large
blocks of RAM needed to support the transfer prior to invoking this operation. This may be
especially important for devices that create image transfers of indeterminate size —such as hand-
held scanners.

Return Codes

TWRC_SUCCESS /* Source done transferring * /
/* the specified block */
TWRC_XFERDONE /* Source done transferring * /

TWAIN 2.4 Specification 7-133

Chapter 7

/* the specified image */
TWRC_CANCEL /* User aborted the transfer from */
/* the Source */
TWRC_FAI LURE
TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_BADVALUE /* Size of buffer did not */
/* match TW SETUPMEMXFER * /
TWCC_OPERATIONERROR /* Failure in the Source -- */
/* transfer invalid */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

/* The following introduced for 2.0 or higher */

TWCC_INTERLOCK /* Cover or door is open */
TWCC_DAMAGEDCORNER /* Document has a damaged corner */
TWCC_FOCUSERROR /* Focusing error during document capture */
TWCC_DOCTOOLIGHT /* Document is too light */
TWCC_DOCTOODARK /* Document is too dark */

TWCC_NOVEDI A /* Source has nothing to capture */

See Also

DG _CONTROL / DAT_SETUPFI LEXFER / MSG_SET
DG_CONTROL / DAT_SETUPFI LEXFER / MSG_GET
DG | MAGE / DAT_| MAGEMEMXFER / MBG GET
DG | MAGE / DAT_| MAGEI NFO / MSG_GET

DG | MAGE / DAT_I MAGELAYOUT / MSG_GET

Capabilities - | CAP_COVPRESSI ON, | CAP_| MAGEFI LEFORMAT, | CAP_XFERVECH

7-134 TWAIN 2.4 Specification

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_| MAGEMEMXFER, MSG_GET,
pl mageMemXf er) ;

pl mgeMenXf er = A pointer to a TW | MAGEMEMXFER structure.

Valid States

6 and 7 (Transitions to State 7, if successful. Remains in State 7 until M5SG_ENDXFER operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via the
Buffered Memory transfer mechanism.

This operation supports the transfer of successive blocks of image data (in strips or, optionally,
tiles) from the Source into one or more main memory transfer buffers. These buffers (for strips)
are allocated and owned by the application. For tiled transfers, the source allocates the buffers.
The application should repeatedly invoke this operation while TWRC_SUCCESS is returned by the
Source.

Application

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area while
the complete image is assembled elsewhere (on disk, for instance).

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTRCL / DAT_SETUPMEMXFER / M5G_CET operation. The application
should do its best to allocate transfer buffers of the size “preferred” by the Source. This will
enhance the chances for superior transfer performance. The buffer size must be between
MinBufSize and MaxBufSize as reported by the Source. Further, the buffers must contain an even
number of bytes. Memory buffers must be double-word aligned and should be padded with zeros
at the end of each raster line.

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAI LURE/ TWCC_BADVALUE.

Once the buffers have been set up, the application should fill pImageMemXfer->Memory.Length
with the actual size (in bytes) of each memory buffer (which are, of course, all the same size).

Windows only — The buffers should be allocated in global memory.

Source

Prior to writing the first buffer, check pImageMemXfer->Memory.Length for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer

TWAIN 2.4 Specification 7-135

Chapter 7

7-136

size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MBG_GET operation, return TWRC_FAI LURE/ TWCC_BADVAL UE and remain in State 6.

If the buffer is of an acceptable size, fill in all fields of pl mageMenXf er except

pl mgeMenXf er ->Menory. The Source must write the data block into the buffer referenced by
pl mgeMenXf er ->Menory. TheMem Store the actual number of bytes written into the buffer in
pl mgeMenXf er ->Byt esWi tt en. Compressed and tiled data effects how the Source fills in
these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the Source
needs to terminate the transfer before the last buffer is written (as when the user aborts the
transfer from the Source’s user interface). Return TWRC_XFERDONE to signal that the last buffer
has been written. Following completion of the transfer, either after all the data has been written or
the transfer has been canceled, remain in State 7 until explicitly transitioned back to State 6 by the
application (DG_CONTRCL / DAT_PENDI NGXFERS / M5G_ENDXFER).

If TWRC_FAI LURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the image
that was being transferred and assure that any temporary variable and local buffer allocations are
eliminated. The Source should be wary of allocating large temporary buffers or variables. Doing
so may disrupt or even disable the transfer process. The application should be aware of the
possible needs of the Source to allocate such space, however, and consider allocating all large
blocks of RAM needed to support the transfer prior to invoking this operation. This may be
especially important for devices that create image transfers of indeterminate size —such as hand-
held scanners.

Return Codes

TWRC_SUCCESS /* Source done transferring */
/* the specified block */

TWRC_XFERDONE /* Source done transferring */
/* the specified imge */

TWRC_CANCEL /* User aborted the transfer from?*/
/* the Source */

TWRC_FAI LURE

TWCC_BADDEST /* No such Source in-session */
/* with application */
TWCC_BADVALUE [* Size of buffer did not */
/* match TW SETUPVEMXFER */
TWCC _OPERATI ONERRCOR /* Failure in the Source-- */
/* transfer invalid */
TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

/* The follow ng introduced for 2.0 or higher */
TWCC _| NTERLOCK /* Cover or door is open */
TWCC_DAMAGEDCORNER /* Docunent has a damaged corner */

TWAIN 2.4 Specification

TWCC_FOCUSERROR /* Focusing error during docunent capture */
TWCC_DOCTOOLI GHT /* Docunent is too |ight */
TWCC_DOCTOODARK /* Docunment is too dark */

See Also

DG _CONTROL / DAT_SETUPMEMXFER / MSG_GET
DG | MAGE / DAT_| MAGEI NFO / MSG_GET

DG | MAGE / DAT_I MAGELAYOUT / MSG_GET

DG | MAGE / DAT_| MAGEMEMFI LEXFER /| MSG_GET

Capabilities - | CAP_COVPRESSI ON, | CAP_TI LES, | CAP_XFERVECH

TWAIN 2.4 Specification 7-137

Chapter 7

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

7-138

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_ | MAGENATI VEXFER, MsSG_GET,
pHandl e) ;

pHandl e = A pointer to a variable of the Operating Systems Native image format.
Windows: Pointer to a handle to a DIB (Device Independent Bitmap) located in memory.

Macintosh: The Pointer to a handle to a TIFF image. It is a TIFF file located in memory if both the
application and the data source are TWAIN 2.4 and later. Pointer to a handle to a Picture (a
PicHandle, QuickDraw picture) located in memory if either the application or the data source is
TWAIN 2.3 and earlier..

Linux: : Pointer to a handle to a TIFF image. It is a TIFF file located in memory.

Refer to Chapter 12, "Operating System Dependencies" for more information on Native Transfer.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation).

Description

Causes the transfer of an image’s data from the Source to the application, via the Native transfer
mechanism, to begin. The resulting data is stored in main memory in a single block. The data is
stored in the Operating Systems native image format. The size of the image that can be transferred
is limited to the size of the memory block that can be allocated by the Source. If the image is too
large to fit, the Source may resize or crop the image.

Note: This is the default transfer mechanism. All Source’s support this mechanism. The Source
will use this mechanism unless the application explicitly negotiates a different transfer
mechanism with | CAP_XFERVECH.

Application

The application need only invoke this operation once per image. The Source allocates up to the
largest block of available memory and transfers the image into it.

Read the image header to determine if the source has modified the image size to fit memory
available. The application is responsible for deallocating the memory block holding the Native-
format image.

Set pHandl e pointing to a handle.

The Source will allocate the image buffer and return the handle to the address specified.

Note: This odd combination of pointer and handle to reference the image data block was used to
assure that the allocated memory object would be relocatable under Microsoft Windows,
Macintosh, and UNIX. A handle was required for this task on both the Macintosh and
under Microsoft Windows; though pointers are inherently relocatable under UNIX.
Rather than disturb the entry points convention that the data object is always referenced

TWAIN 2.4 Specification

by a pointer, it was decided to have that pointer reference the relocatable handle. A
handle in UNIX is typecast to a pointer.

Source

Allocate a single block of memory to hold the image data and write the image data into it using
the appropriate format for the operating environment. The source must assure that the allocated
block will be accessible to the application. Place the handle of the allocated block in the

TW HANDLE pointed to by pHandl e.

Windows: Set pHandl| e pointing to a handle to a device-independent bit map (DIB) in

memory.

Macintosh: Set pHandl e pointing to a handle to a TIFF file in memory if both application
and data source are version 2.4 or later. Set pHand! e pointing to a handle to a Picture in
memory if either the application or the data source is TWAIN 2.3 and earlier.

Linux: Set pHandl| e pointing to a handle to a TIFF file in memory.

If the allocation fails and the image cannot be clipped, return TWRC_FAI LURE and remain in
State 6. Set the pHandl e to NULL. The image whose transfer failed is still pending transfer. Do
not decrement TW PENDI NGXFERS. Count .

Return Codes

TWRC_XFERDONE | *
/ *
TWRC_CANCEL | *
/ *

TWRC_FAI LURE

TWCC BADDEST /*
/ *
TWCC L OAWVEMORY /*
/ *
TWCC OPERATI ONERROR [*
/ *
TWCC SEQERROR /*
/ *
/* The follow ng introduced for 2.
TWCC | NTERLOCK /*
TWCC DAMAGEDCORNER /*
TWCC_FOCUSERRCR /*
TWCC_DOCTOOLI GHT /*
TWCC DOCTOODARK /*
TWCC _NOMVEDI A /*

TWAIN 2.4 Specification

Source done transferring the */

speci fied bl ock */
User aborted the transfer */
within the Source */

No such Source in session */

with application */
Not enough nenory for */
i mge--cannot crop to fit */
Failure in the Source-- */
transfer invalid */
Operation invoked in */
invalid state */

Cover or
Docunent
Focusi ng
Docunent

Docunent

0 or higher */

door is open */

has a damaged corner */

error during docunment capture */
is too |ight */

is too dark */

Sour ce has nothing to capture */

7-139

Chapter 7

See Also

DG | MAGE / DAT_| MAGEI NFO / MSG_GET
DG | MAGE / DAT_I MAGELAYOUT / MBSG_GET

Capability - | CAP_XFERVECH

7-140 TWAIN 2.4 Specification

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET

Call
DSM Entry(pOrigin, pDest, DG |MAGE, DAT JPEGCOVPRESSI ON, MsG GET,
pConpDat a) ;

pConpDat a = A pointer to a TW JPEGCOVPRESSI ON structure.

Valid States

4 through 6

Description

Causes the Source to return the parameters that will be used during the compression of data using
the JPEG algorithms.

All the information that is reported by the MSG_GET operation will be available in the header
portion of the JPEG data. Transferring JPEG-compressed data through memory buffers is slightly
different than other types of buffered transfers. The difference is that the JPEG-compressed image
data will be prefaced by a block of uncompressed information — the JPEG header. This header
information contains all the information that is returned from the MSG_GET operation. The
compressed image information follows the header. The Source should return the header
information in the first transfer. The compressed image data will then follow in the second
through the final buffer. If the application is allocating the buffers, it should assure that the buffer
size for transfer of the header is large enough to contain the complete header.

Application
The application allocates the TW JPEGCOMPRESSI ON structure.

Source

Fill pConpDat a with the parameters that will be applied to the next JPEG-compression operation.
The Source must allocate memory for the contents of the pointer fields pointed to within the
structure (i.e. QuantTable, HuffmanDC, and HuffmanAC).

Return Codes
TWRC_SUCCESS

TWRC_FAI LURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_SEQERROR [* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_JPEGCOVPRESSI ON / MSG_GETDEFAULT
DG_| MAGE / DAT_JPEGCOVPRESSI ON / MSG_RESET
DG_| MAGE / DAT_JPEGCOVPRESSI ON / MSG_SET

Capability - | CAP_COVPRESSI ON

TWAIN 2.4 Specification 7-141

Chapter 7

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT

Call
DSM Entry(pCrigin, pDest, DG | MAGE, DAT_JPEGCOVPRESSI ON, MSG GETDEFAULT,
pConpDat a) ;
pConpDat a = A pointer to a TW JPEGCOVPRESSI ON structure.
Valid States
4 through 6
Description
Causes the Source to return the power-on default values applied to JPEG-compressed data
transfers.
Application
The application allocates the TW JPEGCOVPRESSI ON structure.
Source

Fill in pConpDat a with the power-on default values. The Source must allocate memory for the
contents of the pointer fields pointed to within the structure (i.e. Quant Tabl e, Huf f mranDC and
Huf f manAC). The Source should maintain meaningful default values.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MACE / DAT_JPEGCOWPRESSI ON / MsSG_GET
DG | MAGE / DAT_JPEGCOVWPRESSI ON / MSG_RESET
DG | MACE / DAT_JPEGCOWPRESSI ON / MSG_SET

Capability - | CAP_COVPRESSI ON, | CAP_JPEGQUALI TY

7-142 TWAIN 2.4 Specification

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Call
DSM Entry(pCrigin, pDest, DG | MAGE, DAT_JPEGCOVPRESSI ON, MSG_RESET,
pConpDat a) ;
pConpDat a = A pointer to a TW JPEGCOVPRESSI ON structure.
Valid States
4 only
Description
Return the Source to using its power-on default values for JPEG-compressed transfers.
Application
No special action. May want to perform a MSG_GETDEFAULT if you're curious what the new
values might be.
Source

Use your power-on default values for all future JPEG-compressed transfers. The Source should
maintain meaningful default values for all parameters.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MACE / DAT_JPEGCOWPRESSI ON / MsSG _GET
DG | MAGE / DAT_JPEGCOVPRESSI ON / MSG _GETDEFAULT
DG | MACE / DAT_JPEGCOWPRESSI ON / MSG_SET

Capability - | CAP_COVPRESSI ON, | CAP_JPEGQUALI TY

TWAIN 2.4 Specification 7-143

Chapter 7

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Call

DSM Entry(pOrigin, pDest, DG_|MAGE, DAT_JPEGCOVPRESSI ON, MSG_SET,
pConpDat a) ;

pConpDat a = A pointer to a TW JPEGCOVPRESSI ON structure.

Valid States

4 only

Description

Allows the application to configure the compression parameters to be used on all future JPEG-
compressed transfers during the current session. The application should have already established
that the requested values are supported by the Source.

Application

Fill pConpDat a. Write TWON_DONTCARELG6 into the numeric fields that don’t matter to the
application. Write NULL into the table fields that should use the default tables as defined by the
JPEG specification.

Source

Adopt the requested values for use with all future JPEG-compressed transfers. If a value does not
exactly match an available value, match the value as closely as possible and return
TWRC_CHECKSTATUS. If the value is beyond the range of available values, clip to the nearest
value and return TWRC_FAI LURE/ TWCC_BADVAL UE.

Return Codes
TWRC_SUCCESS
TWRC_CHECKSTATUS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support JPEG */
/* data conpression */
TWCC_BADVALUE /* illegal value specified */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MACE / DAT_JPEGCOWPRESSI ON / MsSG_GET
DG | MAGE / DAT_JPEGCOVWPRESSI ON / MSG _GETDEFAULT
DG | MAGE / DAT_JPEGCOVWPRESSI ON / MSG_RESET

Capability - | CAP_COVPRESSI ON, | CAP_JPEGQUALI TY

7-144 TWAIN 2.4 Specification

DG_IMAGE / DAT_PALETTE8/MSG_GET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG GET, pPal ette);

pPal et t e = A pointer to a TW PALETTES structure.

Valid States

4 through 6

Description

This operation causes the Source to report its current palette information. The application should
assure that the Source can provide palette information by invoking a MSG_CET operation on

| CAP_PI XELTYPE and checking for TWPT_PALETTE. If this pixel type has not been established
as the type to be used for future acquisitions, the Source should respond with its default palette.

To assure that the palette information is wholly accurate, the application should invoke this
operation immediately after completion of the image transfer. The Source may perform palette
optimization during acquisition of the data and the palette it reports before the transfer will differ
from the one available afterwards.

(In general, the DAT_PALETTES operations are specialized to deal with 8-bit data, whether
grayscale or color (8-bit or 24-bit). Most current devices provide data with this bit depth. These
operations allow the application to inquire a Source’s support for palette color data and set up a
palette color transfer. See Chapter 8, "Data Types and Data Structures" for the definitions and data
structures used to describe palette color data within TWAIN.)

Application
The application should allocate the pPalette structure for the Source.
Source

Fill pPal et t e with the current palette. If no palette has been specified or calculated, use the

Source’s default palette (which may coincidentally be the current or default system palette).
Return Codes

TWRC_SUCCESS

TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_PALETTE8 / MSG _GETDEFAULT
DG | MAGE / DAT_PALETTE8 / MSG_RESET
DG | MAGE / DAT_PALETTE8 / MSG_SET

Capability - | CAP_PI XELTYPE

TWAIN 2.4 Specification 7-145

Chapter 7

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT

Call
DSM Entry(pCrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG GETDEFAULT,
pPal ette);
pPal et t e = A pointer to a TW PALETTES structure.
Valid States
4 through 6
Description
This operation causes the Source to report its power-on default palette.
Application
The application should allocate the pPal et t e structure for the Source.
Source

Fill pPal et t e with the default palette.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_PALETTES / MSG GET
DG | MAGE / DAT_PALETTES / MSG RESET
DG | MAGE / DAT_PALETTES / MSG SET

Capability - | CAP_PI XELTYPE

7-146 TWAIN 2.4 Specification

DG_IMAGE / DAT_PALETTE8 / MSG_RESET

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG RESET, pPalette);

pPal et t e = A pointer to a TW PALETTES structure.

Valid States

4 only

Description

This operation causes the Source to dispose of any current palette it has and to use its default
palette for the next palette transfer. A Source that always performs palette optimization may not
use the default palette for the next transfer, but should dispose of its current palette and adopt the
default palette for the moment, anyway. The application can check the actual palette information
by invoking a MSG_CET operation immediately following the image transfer.

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPal et t e with the default palette and use the default palette for the next palette transfer.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC _BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_PALETTES / MSG GET
DG | MAGE / DAT_PALETTES / MSG GETDEFAULT
DG | MAGE / DAT_PALETTES / MSG SET

Capability - | CAP_PI XELTYPE

TWAIN 2.4 Specification 7-147

Chapter 7

DG_IMAGE / DAT_PALETTE8/MSG_SET

7-148

Call
DSM Entry(pOrigin, pDest, DG | MAGE, DAT_PALETTE8, MSG SET, pPalette);
pPal et t e = A pointer to a TW PALETTES structure.

Valid States
4 only

Description
This operation requests that the Source adopt the specified palette for use with all subsequent
palette transfers. The application should be careful to supply a palette that matches the bit depth
of the Source. The Source is not required to adopt this palette. The application should be careful
to check the return value from this operation.

Application
Fill pPal et t e with the desired palette. If writing grayscale information, write the same data into
the Channel 1, Channel 2, and Channel 3 fields of the Col or s array. If NunCol ors ! = 256,
fill the unused array elements with minimum (“black”) values.

Source

The Source should not return TWRC_SUCCESS unless it will actually use the requested palette.
The Source should not modify the palette in any way until the transfer is complete. The palette
should be used for all remaining palette transfers for the duration of the session.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support */
/* palette color transfers */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_PALETTES / MSG GET
DG | MAGE / DAT_PALETTES / MSG GETDEFAULT
DG | MAGE / DAT_PALETTES / MSG RESET

Capability - | CAP_PI XELTYPE

TWAIN 2.4 Specification

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

TWAIN 2.4 Specification

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_RGBRESPONSE, MSG RESET,

pResponse) ;

pResponse = A pointer to a TW RGBRESPONSE structure.

Valid States

4 only

Description

Causes the Source to use its “identity” response curves for future RGB transfers. The identity

curve causes no change in the values of the captured data when it is applied. (Note that resetting

the curves for RGB data does not reset any MSG_SET curves for other pixel types).

Note: The DAT_RGBRESPONSE operations allow the application to specify the transfer curves
that the Source should apply to the RGB data it acquires. The Source should not support
these operations unless it can provide data of pixel type TWPT_RGB. The Source need not
maintain actual “identity response curves” for use with the MSG_RESET operation —once
reset, the Source should transfer the RGB data as acquired from the Source. The
application should be sure that the Source supports these operations before invoking
them. The operations should only be invoked when the active pixel type is RGB
(TWPT_RGB). See Chapter 8, "Data Types and Data Structures" for information about the
definitions and data structures used to describe the RGB response curve within TWAIN.

Application
No special action.
Source

Apply the identity response curve to all future RGB transfers. This means that the Source will
transfer the RGB data exactly as acquired from the device.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support RGB */
/* response curves */

TWCC_BADVALUE /* Current pixel type is not */
/* TWPT_RGB */

TWCC_SEQERROR /* Operation invoked ininvalid */
/* state */

See Also

DG | MAGE / DAT_RGBRESPONSE / MsSG_SET

Capability - | CAP_PI XELTYPE

7-149

Chapter 7

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Call

DSM Entry(pOrigin, pDest, DG | MAGE, DAT_RGBRESPONSE, MsSG_SET,
pResponse) ;

pResponse = A pointer to a TW RGBRESPONSE structure.

Valid States

4 only

Description
Causes the Source to transform any RGB data according to the response curves specified by the
application.

Application

Fill all three elements of the response curve with the response curve data you want the Source to
apply to future RGB transfers. The application should consider writing the same values into each
element of the same index to minimize color shift problems.

The Source may not support this operation. The application should ensure that the current pixel
type is TWPT_RGB and examine the return code from this operation.

Source

Apply the specified response curves to all future RGB transfers.

Return Codes
TWRC_SUCCESS
TWRC_FAI LURE

TWCC BADPROTOCOL /* Source does not support col or */
/* response curves */
TWCC_BADVALUE /* Current pixel type is not RGB */
TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG | MAGE / DAT_RGBRESPONSE / MSG_RESET

Capability - | CAP_PI XELTYPE

7-150 TWAIN 2.4 Specification

Data Types and Data Structures

Chapter Contents

Naming Conventionst 8-1
Platform Dependent Definitions and Typedefs 8-3
Platform Specific Typedefs. e 8-4
Definitions of Common Types. i 8-6
Data Structure Definitions 8-8
Data Argument Types that Don’t Have Associated TW_Structures...................... 8-65
Constants 8-67
Deprecated Items. 8-100

This section of the Specification is definitive and authoritative in its description of the TWAIN
namespace and the numeric ids that go with each name in that space. If a discrepancy is found
between this chapter and any C/C++ TWAIN.H definition file then the TWAIN.H file must be
corrected.

A TWAI N. Hdefinition file is provided with this toolkit, this file is specific to C/C++ solutions.

If a definition file for a previously unsupported language is submitted to the TWAIN Working
Group, and if it passes review, then the salient points needed to recreate it will be added to this
chapter. A definition file cannot be called TWAIN or said to support TWAIN unless it can be
completely created following the information in this chapter.

Naming Conventions

Data Structures, Variables, Pointers and Handles

Data structures referenced by pData parameter in DSM_Entry calls

Are prefixed by TW_and followed by a descriptive name, in upper case. The name typically
matches the call’s DAT parameter.

Example: TW USERI NTERFACE

TWAIN 2.4 Specification 8-1

Fields in data structures (not containing pointers or handles)
Typically, begin with a capital letter followed by mixed upper and lower case letters.

Example: The M nBuf Si ze, MaxBuf Si ze, and Pr ef er r ed fields in which are in the
TW SETUPNMEMXFER structure.

Fields in data structures that contain pointers or handles

Name starts with lower case “p” or “h” for pointer or handle followed by a typical field name
with initial capital then mixed case characters.

Example: pDat a, hCont ai ner

Constants and Types

General-use constants
Are prefixed by TWON_ followed by the description of the constant’s meaning.
Example: TWON_ARRAY, TWON_ONEVALUE

Specific-use constants

Are prefixed with TWkx_ where xx are two letters identifying the group to which the constant
belongs.

Example: TWIY_| NT16, TWI'Y_STR32 are constants of the group TW Types

Common data types

Rather than use the i nt, char, | ong, and other. types with their variations between
compilers, TWAIN defines a group of types that are used to cast each data item used by the
protocol. Types are prefixed and named exactly the same as TWAIN data structures, TW_
followed by a descriptive name, all in upper case characters.

Example: TW Ul NT32, TW HANDLE

TWAIN.H internal constants

Starting with TWAIN 2.0 internal constants that are of special interest to TWAIN.H itself are
used to improve the readability and maintainability of the file. They are prefixed with TWH._.

Custom Constants

Applications and Sources may define their own private (custom) constant identifiers for any
existing constant group by assigning the constant a value greater than or equal to 0x8000. They
may also define any new desired custom constant group. The consuming entity should check the
originating entity’s